These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 3225835)
1. Impermeant potential-sensitive oxonol dyes: II. The dependence of the absorption signal on the length of alkyl substituents attached to the dye. Nyirjesy P; George EB; Gupta RK; Basson M; Pratap PR; Freedman JC; Raman K; Waggoner AS J Membr Biol; 1988 Oct; 105(1):45-53. PubMed ID: 3225835 [TBL] [Abstract][Full Text] [Related]
2. Impermeant potential-sensitive oxonol dyes: III. The dependence of the absorption signal on membrane potential. George EB; Nyirjesy P; Pratap PR; Freedman JC; Waggoner AS J Membr Biol; 1988 Oct; 105(1):55-64. PubMed ID: 3225836 [TBL] [Abstract][Full Text] [Related]
3. Impermeant potential-sensitive oxonol dyes: I. Evidence for an "on-off" mechanism. George EB; Nyirjesy P; Basson M; Ernst LA; Pratap PR; Freedman JC; Waggoner AS J Membr Biol; 1988 Aug; 103(3):245-53. PubMed ID: 3184175 [TBL] [Abstract][Full Text] [Related]
4. The behavior of oxonol dyes in phospholipid dispersions. Bashford CL; Chance B; Smith JC; Yoshida T Biophys J; 1979 Jan; 25(1):63-85. PubMed ID: 263685 [TBL] [Abstract][Full Text] [Related]
5. Oxonol VI as an optical indicator for membrane potentials in lipid vesicles. Apell HJ; Bersch B Biochim Biophys Acta; 1987 Oct; 903(3):480-94. PubMed ID: 2444259 [TBL] [Abstract][Full Text] [Related]
6. Kinetics of the potential-sensitive extrinsic probe oxonol VI in beef heart submitochondrial particles. Smith JC; Chance B J Membr Biol; 1979; 46(3):255-82. PubMed ID: 233819 [TBL] [Abstract][Full Text] [Related]
7. Oxonol dyes as monitors of membrane potential. Their behavior in photosynthetic bacteria. Bashford CL; Chance B; Prince RC Biochim Biophys Acta; 1979 Jan; 545(1):46-57. PubMed ID: 103582 [TBL] [Abstract][Full Text] [Related]
8. Oxonol-V as a probe of chromaffin granule membrane potentials. Scherman D; Henry JP Biochim Biophys Acta; 1980 Jun; 599(1):150-66. PubMed ID: 7397145 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the steady-state and dynamic fluorescence properties of the potential-sensitive dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol (Dibac4(3)) in model systems and cells. Epps DE; Wolfe ML; Groppi V Chem Phys Lipids; 1994 Feb; 69(2):137-50. PubMed ID: 8181103 [TBL] [Abstract][Full Text] [Related]
10. On the interaction of ionic detergents with lipid membranes. Thermodynamic comparison of n-alkyl-+N(CH₃)₃ and n-alkyl-SO₄⁻. Beck A; Li-Blatter X; Seelig A; Seelig J J Phys Chem B; 2010 Dec; 114(48):15862-71. PubMed ID: 21067191 [TBL] [Abstract][Full Text] [Related]
11. Fluorescent styryl dyes of the RH series affect a potential drop on the membrane/solution boundary. Malkov DY; Sokolov VS Biochim Biophys Acta; 1996 Jan; 1278(2):197-204. PubMed ID: 8593277 [TBL] [Abstract][Full Text] [Related]
13. Interactions of voltage-sensing dyes with membranes. II. Spectrophotometric and electrical correlates of cyanine-dye adsorption to membranes. Krasne S Biophys J; 1980 Jun; 30(3):441-62. PubMed ID: 7260283 [TBL] [Abstract][Full Text] [Related]
14. Interaction of the neuronal marker dye FM1-43 with lipid membranes. Thermodynamics and lipid ordering. Schote U; Seelig J Biochim Biophys Acta; 1998 Dec; 1415(1):135-46. PubMed ID: 9858712 [TBL] [Abstract][Full Text] [Related]
15. Use of oxonol V as a probe of membrane potential in proteoliposomes containing cytochrome oxidase in the submitochondrial orientation. Cooper CE; Bruce D; Nicholls P Biochemistry; 1990 Apr; 29(16):3859-65. PubMed ID: 2162199 [TBL] [Abstract][Full Text] [Related]
16. The interaction of potential-sensitive molecular probes with dimyristoylphosphatidylcholine vesicles investigated by 31P-NMR and electron microscopy. Bammel BP; Brand JA; Simmons RB; Evans D; Smith JC Biochim Biophys Acta; 1987 Jan; 896(2):136-52. PubMed ID: 3801465 [TBL] [Abstract][Full Text] [Related]
17. Effect of the alkyl chain length of monocarboxylic acid on the permeation through bilayer lipid membranes. Evtodienko VY; Kovbasnjuk ON; Antonenko YN; Yaguzhinsky LS Biochim Biophys Acta; 1996 Jun; 1281(2):245-51. PubMed ID: 8664324 [TBL] [Abstract][Full Text] [Related]
18. Comparative study of membrane potential-sensitive fluorescent probes and their use in ion channel screening assays. Wolff C; Fuks B; Chatelain P J Biomol Screen; 2003 Oct; 8(5):533-43. PubMed ID: 14567780 [TBL] [Abstract][Full Text] [Related]
19. Membrane potential and cation content of osteoblast-like cells (UMR 106) assessed by fluorescent dyes. Civitelli R; Reid IR; Halstead LR; Avioli LV; Hruska KA J Cell Physiol; 1987 Jun; 131(3):434-41. PubMed ID: 3474236 [TBL] [Abstract][Full Text] [Related]
20. Molecular engineering of fluorescent dyes for long-term specific visualization of the plasma membrane based on alkyl-chain-regulated cell permeability. Yao C; Zuo J; Wu P; Liu J; Pan J; Zhu E; Feng H; Zhang K; Qian Z Talanta; 2024 Aug; 275():126105. PubMed ID: 38640520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]