These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 3225836)
1. Impermeant potential-sensitive oxonol dyes: III. The dependence of the absorption signal on membrane potential. George EB; Nyirjesy P; Pratap PR; Freedman JC; Waggoner AS J Membr Biol; 1988 Oct; 105(1):55-64. PubMed ID: 3225836 [TBL] [Abstract][Full Text] [Related]
2. Impermeant potential-sensitive oxonol dyes: II. The dependence of the absorption signal on the length of alkyl substituents attached to the dye. Nyirjesy P; George EB; Gupta RK; Basson M; Pratap PR; Freedman JC; Raman K; Waggoner AS J Membr Biol; 1988 Oct; 105(1):45-53. PubMed ID: 3225835 [TBL] [Abstract][Full Text] [Related]
3. Impermeant potential-sensitive oxonol dyes: I. Evidence for an "on-off" mechanism. George EB; Nyirjesy P; Basson M; Ernst LA; Pratap PR; Freedman JC; Waggoner AS J Membr Biol; 1988 Aug; 103(3):245-53. PubMed ID: 3184175 [TBL] [Abstract][Full Text] [Related]
4. Oxonol VI as an optical indicator for membrane potentials in lipid vesicles. Apell HJ; Bersch B Biochim Biophys Acta; 1987 Oct; 903(3):480-94. PubMed ID: 2444259 [TBL] [Abstract][Full Text] [Related]
5. The behavior of oxonol dyes in phospholipid dispersions. Bashford CL; Chance B; Smith JC; Yoshida T Biophys J; 1979 Jan; 25(1):63-85. PubMed ID: 263685 [TBL] [Abstract][Full Text] [Related]
6. Oxonol-V as a probe of chromaffin granule membrane potentials. Scherman D; Henry JP Biochim Biophys Acta; 1980 Jun; 599(1):150-66. PubMed ID: 7397145 [TBL] [Abstract][Full Text] [Related]
7. A stopped-flow kinetic study of the interaction of potential-sensitive oxonol dyes with lipid vesicles. Clarke RJ; Apell HJ Biophys Chem; 1989 Nov; 34(3):225-37. PubMed ID: 2611347 [TBL] [Abstract][Full Text] [Related]
8. Kinetics of the potential-sensitive extrinsic probe oxonol VI in beef heart submitochondrial particles. Smith JC; Chance B J Membr Biol; 1979; 46(3):255-82. PubMed ID: 233819 [TBL] [Abstract][Full Text] [Related]
9. Lymphocyte membrane potential and Ca2+-sensitive potassium channels described by oxonol dye fluorescence measurements. Wilson HA; Chused TM J Cell Physiol; 1985 Oct; 125(1):72-81. PubMed ID: 2413058 [TBL] [Abstract][Full Text] [Related]
10. Oxonol dyes as monitors of membrane potential. Their behavior in photosynthetic bacteria. Bashford CL; Chance B; Prince RC Biochim Biophys Acta; 1979 Jan; 545(1):46-57. PubMed ID: 103582 [TBL] [Abstract][Full Text] [Related]
11. Modification of ion transport in lipid bilayer membranes in the presence of 2,4-dichlorophenoxyacetic acid. II. Suppression of tetraphenylborate conductance and changes of interfacial potentials. Smejtek P; Paulis-Illangasekare M Biophys J; 1979 Jun; 26(3):467-87. PubMed ID: 262428 [TBL] [Abstract][Full Text] [Related]
12. Use of oxonol V as a probe of membrane potential in proteoliposomes containing cytochrome oxidase in the submitochondrial orientation. Cooper CE; Bruce D; Nicholls P Biochemistry; 1990 Apr; 29(16):3859-65. PubMed ID: 2162199 [TBL] [Abstract][Full Text] [Related]
13. The interaction of potential-sensitive molecular probes with dimyristoylphosphatidylcholine vesicles investigated by 31P-NMR and electron microscopy. Bammel BP; Brand JA; Simmons RB; Evans D; Smith JC Biochim Biophys Acta; 1987 Jan; 896(2):136-52. PubMed ID: 3801465 [TBL] [Abstract][Full Text] [Related]
14. Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study. Benz R; Beckers F; Zimmermann U J Membr Biol; 1979 Jul; 48(2):181-204. PubMed ID: 480336 [TBL] [Abstract][Full Text] [Related]
15. The behavior of the fluorescence lifetime and polarization of oxonol potential-sensitive extrinsic probes in solution and in beef heart submitochondrial particles. Smith JC; Hallidy L; Topp MR J Membr Biol; 1981; 60(3):173-85. PubMed ID: 7253009 [TBL] [Abstract][Full Text] [Related]
16. Combined use of two membrane-potential-sensitive dyes for determination of the Galvani potential difference across a biomimetic oil/water interface. Yoshimura T; Nagatani H; Osakai T Anal Bioanal Chem; 2014 May; 406(14):3407-14. PubMed ID: 24687435 [TBL] [Abstract][Full Text] [Related]
17. Measurement of the membrane potential generated by complex I in submitochondrial particles. Ghelli A; Benelli B; Esposti MD J Biochem; 1997 Apr; 121(4):746-55. PubMed ID: 9163527 [TBL] [Abstract][Full Text] [Related]
18. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure. Wieprecht T; Beyermann M; Seelig J Biochemistry; 1999 Aug; 38(32):10377-87. PubMed ID: 10441132 [TBL] [Abstract][Full Text] [Related]
19. Binding and diffusion kinetics of the interaction of a hydrophobic potential-sensitive dye with lipid vesicles. Clarke RJ Biophys Chem; 1991 Jan; 39(1):91-106. PubMed ID: 2012838 [TBL] [Abstract][Full Text] [Related]