These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32258395)

  • 1. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels.
    Ding R; Yao Y; Sun B; Liu G; He J; Li T; Wan X; Dai Z; Ponge D; Raabe D; Zhang C; Godfrey A; Miyamoto G; Furuhara T; Yang Z; van der Zwaag S; Chen H
    Sci Adv; 2020 Mar; 6(13):eaay1430. PubMed ID: 32258395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical nano-martensite-engineered a low-cost ultra-strong and ductile titanium alloy.
    Zhang C; Bao X; Hao M; Chen W; Zhang D; Wang D; Zhang J; Liu G; Sun J
    Nat Commun; 2022 Oct; 13(1):5966. PubMed ID: 36216815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Significance of Coherent Transformation on Grain Refinement and Consequent Enhancement in Toughness.
    Li X; Zhao J; Dong L; Misra RDK; Wang X; Wang X; Shang C
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33198107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additively manufactured hierarchical stainless steels with high strength and ductility.
    Wang YM; Voisin T; McKeown JT; Ye J; Calta NP; Li Z; Zeng Z; Zhang Y; Chen W; Roehling TT; Ott RT; Santala MK; Depond PJ; Matthews MJ; Hamza AV; Zhu T
    Nat Mater; 2018 Jan; 17(1):63-71. PubMed ID: 29115290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-strength, low-alloy steels.
    Rashid MS
    Science; 1980 May; 208(4446):862-9. PubMed ID: 17772810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable, Ductile and Strong Ultrafine HT-9 Steels via Large Strain Machining.
    El-Atwani O; Kim H; Gigax JG; Harvey C; Aytuna B; Efe M; Maloy SA
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation.
    Jiang S; Wang H; Wu Y; Liu X; Chen H; Yao M; Gault B; Ponge D; Raabe D; Hirata A; Chen M; Wang Y; Lu Z
    Nature; 2017 Apr; 544(7651):460-464. PubMed ID: 28397822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 2.9 GPa Strength Nano-Grained and Nano-Precipitated 304L-Type Austenitic Stainless Steel.
    Du C; Liu G; Sun B; Xin S; Shen T
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33260803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile route to bulk ultrafine-grain steels for high strength and ductility.
    Gao J; Jiang S; Zhang H; Huang Y; Guan D; Xu Y; Guan S; Bendersky LA; Davydov AV; Wu Y; Zhu H; Wang Y; Lu Z; Rainforth WM
    Nature; 2021 Feb; 590(7845):262-267. PubMed ID: 33568822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.
    Li Z; Pradeep KG; Deng Y; Raabe D; Tasan CC
    Nature; 2016 Jun; 534(7606):227-30. PubMed ID: 27279217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures.
    Fan L; Yang T; Zhao Y; Luan J; Zhou G; Wang H; Jiao Z; Liu CT
    Nat Commun; 2020 Dec; 11(1):6240. PubMed ID: 33288762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength.
    Yang M; Yan D; Yuan F; Jiang P; Ma E; Wu X
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7224-7229. PubMed ID: 29946032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites.
    Dusoe KJ; Vijayan S; Bissell TR; Chen J; Morley JE; Valencia L; Dongare AM; Aindow M; Lee SW
    Sci Rep; 2017 Jan; 7():40409. PubMed ID: 28067334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microalloying ultrafine grained Al alloys with enhanced ductility.
    Jiang L; Li JK; Cheng PM; Liu G; Wang RH; Chen BA; Zhang JY; Sun J; Yang MX; Yang G
    Sci Rep; 2014 Jan; 4():3605. PubMed ID: 24398915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new insight into ductile fracture of ultrafine-grained Al-Mg alloys.
    Yu H; Tieu AK; Lu C; Liu X; Liu M; Godbole A; Kong C; Qin Q
    Sci Rep; 2015 Apr; 5():9568. PubMed ID: 25851228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of dynamic transformation and dynamic recrystallization for realizing ultrafine-grained steels with superior mechanical properties.
    Zhao L; Park N; Tian Y; Shibata A; Tsuji N
    Sci Rep; 2016 Dec; 6():39127. PubMed ID: 27966603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of carbide precipitate morphology on fracture toughness in low-tempered steels containing Ni.
    Krawczyk J; Bała P; Pacyna J
    J Microsc; 2010 Mar; 237(3):411-5. PubMed ID: 20500408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys.
    Liang YJ; Wang L; Wen Y; Cheng B; Wu Q; Cao T; Xiao Q; Xue Y; Sha G; Wang Y; Ren Y; Li X; Wang L; Wang F; Cai H
    Nat Commun; 2018 Oct; 9(1):4063. PubMed ID: 30282971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Making ultrastrong steel tough by grain-boundary delamination.
    Liu L; Yu Q; Wang Z; Ell J; Huang MX; Ritchie RO
    Science; 2020 Jun; 368(6497):1347-1352. PubMed ID: 32381592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of PFM Firing Cycles on the Mechanical Properties, Phase Composition, and Microstructure of Nickel-Chromium Alloy.
    Anwar M; Tripathi A; Kar SK; Sekhar KC
    J Prosthodont; 2015 Dec; 24(8):634-41. PubMed ID: 26215348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.