These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32258396)

  • 1. High-frequency rectification via chiral Bloch electrons.
    Isobe H; Xu SY; Fu L
    Sci Adv; 2020 Mar; 6(13):eaay2497. PubMed ID: 32258396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene moiré superlattices with giant quantum nonlinearity of chiral Bloch electrons.
    He P; Koon GKW; Isobe H; Tan JY; Hu J; Neto AHC; Fu L; Yang H
    Nat Nanotechnol; 2022 Apr; 17(4):378-383. PubMed ID: 35115723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscale Chiral Rectennas for Energy Harvesting.
    Suárez-Rodríguez M; Martín-García B; Skowroński W; Staszek K; Calavalle F; Fert A; Gobbi M; Casanova F; Hueso LE
    Adv Mater; 2024 Jun; 36(26):e2400729. PubMed ID: 38597368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant magnetochiral anisotropy from quantum-confined surface states of topological insulator nanowires.
    Legg HF; Rößler M; Münning F; Fan D; Breunig O; Bliesener A; Lippertz G; Uday A; Taskin AA; Loss D; Klinovaja J; Ando Y
    Nat Nanotechnol; 2022 Jul; 17(7):696-700. PubMed ID: 35551241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terahertz Nonlinear Hall Rectifiers Based on Spin-Polarized Topological Electronic States in 1T-CoTe
    Hu Z; Zhang L; Chakraborty A; D'Olimpio G; Fujii J; Ge A; Zhou Y; Liu C; Agarwal A; Vobornik I; Farias D; Kuo CN; Lue CS; Politano A; Wang SW; Hu W; Chen X; Lu W; Wang L
    Adv Mater; 2023 Mar; 35(10):e2209557. PubMed ID: 36633006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant nonlinear Hall and wireless rectification effects at room temperature in the elemental semiconductor tellurium.
    Cheng B; Gao Y; Zheng Z; Chen S; Liu Z; Zhang L; Zhu Q; Li H; Li L; Zeng C
    Nat Commun; 2024 Jun; 15(1):5513. PubMed ID: 38951497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear transport and radio frequency rectification in BiTeBr at room temperature.
    Lu XF; Zhang CP; Wang N; Zhao D; Zhou X; Gao W; Chen XH; Law KT; Loh KP
    Nat Commun; 2024 Jan; 15(1):245. PubMed ID: 38172558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-Dependent and Gate-Tunable Rectification in a Black Phosphorus/WS
    Dastgeer G; Khan MF; Nazir G; Afzal AM; Aftab S; Naqvi BA; Cha J; Min KA; Jamil Y; Jung J; Hong S; Eom J
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):13150-13157. PubMed ID: 29578329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid heterojunctions between a 2D transition metal dichalcogenide and metal phthalocyanines: their energy levels vis-à-vis current rectification.
    Banerjee A; Kundu B; Pal AJ
    Phys Chem Chem Phys; 2017 Oct; 19(41):28450-28457. PubMed ID: 29039430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear Hall Acceleration and the Quantum Rectification Sum Rule.
    Matsyshyn O; Sodemann I
    Phys Rev Lett; 2019 Dec; 123(24):246602. PubMed ID: 31922840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rectification ratio and direction controlled by temperature in copper phthalocyanine ensemble molecular diodes.
    Sergi Lopes C; Merces L; de Oliveira RF; de Camargo DHS; Bof Bufon CC
    Nanoscale; 2020 May; 12(18):10001-10009. PubMed ID: 32196026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Active Switching of Bipolar Current Rectification in 2D Semiconductor Vertical Diodes.
    Guo Q; Zou Z; Xie Y; Lan X; Zhu G; Xu K; Jin R; Xu W; Huang G; Li Y; Wang T; Du W
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1583-1591. PubMed ID: 36537368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene/Semiconductor Heterostructure Wireless Energy Harvester through Hot Electron Excitation.
    Xuan Y; Chen H; Chen Y; Zheng H; Lu Y; Lin S
    Research (Wash D C); 2020; 2020():3850389. PubMed ID: 32566930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode.
    Davids PS; Jarecki RL; Starbuck A; Burckel DB; Kadlec EA; Ribaudo T; Shaner EA; Peters DW
    Nat Nanotechnol; 2015 Dec; 10(12):1033-8. PubMed ID: 26414194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 13.56 MHz Rectifier Based on Fully Inkjet Printed Organic Diodes.
    Viola FA; Brigante B; Colpani P; Dell'Erba G; Mattoli V; Natali D; Caironi M
    Adv Mater; 2020 Aug; 32(33):e2002329. PubMed ID: 32648300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning rectification in single-molecular diodes.
    Batra A; Darancet P; Chen Q; Meisner JS; Widawsky JR; Neaton JB; Nuckolls C; Venkataraman L
    Nano Lett; 2013; 13(12):6233-7. PubMed ID: 24274757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental study of thermal rectification in suspended monolayer graphene.
    Wang H; Hu S; Takahashi K; Zhang X; Takamatsu H; Chen J
    Nat Commun; 2017 Jun; 8():15843. PubMed ID: 28607493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant Thermal Rectification from Single-Carbon Nanotube-Graphene Junction.
    Yang X; Yu D; Cao B
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24078-24084. PubMed ID: 28636314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Study of the Thermal Rectification Properties of a Graphene-Based Nanostructure.
    Chen J; Meng L
    ACS Omega; 2022 Aug; 7(32):28030-28040. PubMed ID: 35990432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.