BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 32258501)

  • 1. Free radical scavenging mechanism of 1,3,4-oxadiazole derivatives: thermodynamics of O-H and N-H bond cleavage.
    Alisi IO; Uzairu A; Abechi SE
    Heliyon; 2020 Mar; 6(3):e03683. PubMed ID: 32258501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study on the structural and antioxidant properties of some recently synthesised 2,4,5-trimethoxy chalcones.
    Wang G; Xue Y; An L; Zheng Y; Dou Y; Zhang L; Liu Y
    Food Chem; 2015 Mar; 171():89-97. PubMed ID: 25308647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PM6 study of free radical scavenging mechanisms of flavonoids: why does O-H bond dissociation enthalpy effectively represent free radical scavenging activity?
    Amić D; Stepanić V; Lučić B; Marković Z; Dimitrić Marković JM
    J Mol Model; 2013 Jun; 19(6):2593-603. PubMed ID: 23479282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-based design of chalcone analogues and thermodynamic analysis of their mechanism of free radical scavenge.
    Alisi IO; Uzairu A; Idris SO
    J Mol Model; 2021 Feb; 27(3):95. PubMed ID: 33638715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two Theorems and Important Insight on How the Preferred Mechanism of Free Radical Scavenging Cannot Be Settled. Comment on Pandithavidana, D.R.; Jayawardana, S.B. Comparative Study of Antioxidant Potential of Selected Dietary Vitamins; Computational Insights.
    Bâldea I
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical study on the antioxidant properties of 2'-hydroxychalcones: H-atom vs. electron transfer mechanism.
    Xue Y; Zheng Y; Zhang L; Wu W; Yu D; Liu Y
    J Mol Model; 2013 Sep; 19(9):3851-62. PubMed ID: 23801254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The antioxidative activity of piceatannol and its different derivatives: Antioxidative mechanism analysis.
    Zheng YZ; Chen DF; Deng G; Guo R; Fu ZM
    Phytochemistry; 2018 Dec; 156():184-192. PubMed ID: 30312934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radical Scavenging Activity of Puerarin: A Theoretical Study.
    Zhou H; Li X; Shang Y; Chen K
    Antioxidants (Basel); 2019 Nov; 8(12):. PubMed ID: 31779233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why Ortho- and Para-Hydroxy Metabolites Can Scavenge Free Radicals That the Parent Atorvastatin Cannot? Important Pharmacologic Insight from Quantum Chemistry.
    Bâldea I
    Molecules; 2022 Aug; 27(15):. PubMed ID: 35956986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theoretical study on the enthalpies of homolytic and heterolytic N-H bond cleavage in substituted melatonins in the gas-phase and aqueous solution.
    Najafi M; Farmanzadeh D; Klein E; Zahedi M
    Acta Chim Slov; 2013; 60(1):43-55. PubMed ID: 23841331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study on the radical scavenging activity of gallic acid.
    Molski M
    Heliyon; 2023 Jan; 9(1):e12806. PubMed ID: 36691549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant activity of erlotinib and gefitinib: theoretical and experimental insights.
    K P SH; Babu TD; C M P; Joshy G; Mathew D; Thayyil MS
    Free Radic Res; 2022 Feb; 56(2):196-208. PubMed ID: 35514158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bond dissociation free energy as a general parameter for flavonoid radical scavenging activity.
    Stepanić V; Gall Trošelj K; Lučić B; Marković Z; Amić D
    Food Chem; 2013 Nov; 141(2):1562-70. PubMed ID: 23790952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radical scavenging activity characterization of synthetic isochroman-derivatives of hydroxytyrosol: A gas-phase DFT approach.
    Nenadis N; Siskos D
    Food Res Int; 2015 Oct; 76(Pt 3):506-510. PubMed ID: 28455031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of the H5⋯OC4 intramolecular hydrogen-bond (IHB) on the antioxidative activity of flavonoid.
    Zheng YZ; Deng G; Guo R; Fu ZM; Chen DF
    Phytochemistry; 2019 Apr; 160():19-24. PubMed ID: 30669059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant Potential of Santowhite as Synthetic and Ascorbic Acid as Natural Polymer Additives.
    Thbayh DK; Reizer E; Kahaly MU; Viskolcz B; Fiser B
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fisetin and Robinetin antiradical activity under solvent effect: density functional theory study.
    Menacer R; Rekkab S; Kabouche Z
    J Mol Model; 2022 Aug; 28(8):240. PubMed ID: 35913682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational study of the structure-free radical scavenging relationship of procyanidins.
    Mendoza-Wilson AM; Castro-Arredondo SI; Balandrán-Quintana RR
    Food Chem; 2014 Oct; 161():155-61. PubMed ID: 24837934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical insights into the radical scavenging activity of glipizide: DFT and molecular docking studies.
    K P SH; K A AR; Medammal Z; Thayyil MS; Babu TD
    Free Radic Res; 2022 Jan; 56(1):53-62. PubMed ID: 35086396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radical Scavenging Activity of Natural-Based Cassaine Diterpenoid Amides and Amines.
    Ngo TC; Nguyen TH; Dao DQ
    J Chem Inf Model; 2019 Feb; 59(2):766-776. PubMed ID: 30681326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.