BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 3225873)

  • 1. Glutamate decarboxylase inhibition and vitamin B6 metabolism in brain of cirrhotic rats chronically treated with carbon tetrachloride.
    Díaz-Muñoz M; Tapia R
    J Neurosci Res; 1988 Jul; 20(3):376-82. PubMed ID: 3225873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seizure susceptibility in the developing mouse and its relationship to glutamate decarboxylase and pyridoxal phosphate in brain.
    Tapia R; Pasantes-Morales H; Taborda E; Pérez de la Mora M
    J Neurobiol; 1975 Mar; 6(2):159-70. PubMed ID: 171340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of pyridoxal phosphate on gamma-aminobutyric acid metabolism in different sections of the brain in irradiated animals].
    Tsybul'skiĭ VV; Nagiev ER
    Radiobiologiia; 1991; 31(2):201-8. PubMed ID: 1674611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vitamin B6 metabolism in chronic alcohol abuse The effect of ethanol oxidation on hepatic pyridoxal 5'-phosphate metabolism.
    Vech RL; Lumeng L; Li TK
    J Clin Invest; 1975 May; 55(5):1026-32. PubMed ID: 1168205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of zinc and zinc-binding proteins in regulation of glutamic acid decarboxylase in brain.
    Ebadi M; Wilt S; Ramaley R; Swanson S; Mebus C
    Prog Clin Biol Res; 1984; 144A():255-75. PubMed ID: 6328536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of sanguinarine on the GABA synthesizing enzyme glutamate decarboxylase in vitro.
    Netopilova M; Drsata J; Ulrichová J
    Pharmazie; 1996 Aug; 51(8):589-91. PubMed ID: 8794470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convulsions induced by methylmalonic acid are associated with glutamic acid decarboxylase inhibition in rats: a role for GABA in the seizures presented by methylmalonic acidemic patients?
    Malfatti CR; Perry ML; Schweigert ID; Muller AP; Paquetti L; Rigo FK; Fighera MR; Garrido-Sanabria ER; Mello CF
    Neuroscience; 2007 Jun; 146(4):1879-87. PubMed ID: 17467181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Changes in the brain GABA system after repeated injections of pyridoxal-5'-phosphate and its Schiff base with GABA].
    Rozanov VA; Kopelevich VM; Savitskiĭ IV
    Vopr Med Khim; 1989; 35(2):42-6. PubMed ID: 2741411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of extensive GABA synthesis in the small population of GAD positive neurons in cerebellar cultures by the use of pharmacological tools.
    Sonnewald U; Kortner TM; Qu H; Olstad E; Suñol C; Bak LK; Schousboe A; Waagepetersen HS
    Neurochem Int; 2006; 48(6-7):572-8. PubMed ID: 16516347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes of pyridoxal kinase expression and activity in the gerbil hippocampus following transient forebrain ischemia.
    Hwang IK; Yoo KY; Kim DS; Eum WS; Park JK; Park J; Kwon OS; Kang TC; Choi SY; Won MH
    Neuroscience; 2004; 128(3):511-8. PubMed ID: 15381280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate alteration of glutamic acid decarboxylase (GAD) in GABAergic neurons: the role of cysteine proteases.
    Monnerie H; Le Roux PD
    Exp Neurol; 2008 Sep; 213(1):145-53. PubMed ID: 18599042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Pyridoxal kinase activity and pyridoxal-P concentration in mammalian tissues under normal and experimental conditions].
    Bukin IuV
    Biokhimiia; 1976 Jan; 41(1):81-90. PubMed ID: 179606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyritinol and the enzymes of gamma-aminobutyric acid (GABA) synthesis and degradation.
    Turský T
    Physiol Bohemoslov; 1988; 37(2):135-43. PubMed ID: 2975003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of thyrotropin releasing hormone (TRH) on GABA (gamma aminobutyric acid) metabolism in mouse and rat brains: as to the activities of GAD (glutamic acid decarboxylase), GABA-T (GABA-transaminase) and GABA re-uptake].
    Kurahashi K; Kaneko S; Matsunaga M; Sato T; Takebe K
    No To Shinkei; 1985 Dec; 37(12):1211-6. PubMed ID: 3937548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of formation in vivo of pyridoxal phosphate in hydrazine-treated rats.
    Chatterjee AK; Sengupta K
    Int J Vitam Nutr Res; 1980; 50(1):24-8. PubMed ID: 7390711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in some properties of newborn and adult brain glutamate decarboxylase.
    Tapia R; Meza-Ruíz G
    J Neurobiol; 1975 Mar; 6(2):171-81. PubMed ID: 1185180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convulsions and inhibition of glutamate decarboxylase by pyridoxal phosphate-gamma-glutamyl hydrazone in the developing rat.
    Massieu L; Rivera A; Tapia R
    Neurochem Res; 1994 Feb; 19(2):183-7. PubMed ID: 8183428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of the cockroach brain gamma-aminobutyric acid system to isonicotinic acid hydrazide and mercaptopropionic acid.
    Pandey A; Singh R
    Biochem Int; 1985 Feb; 10(2):213-20. PubMed ID: 3994733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational alteration in serum albumin as a carrier for pyridoxal phosphate: a distinction from pyridoxal phosphate-dependent glutamate decarboxylase.
    Zhang F; Thottananiyil M; Martin DL; Chen CH
    Arch Biochem Biophys; 1999 Apr; 364(2):195-202. PubMed ID: 10190974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitamin B6 metabolism in Morris hepatomas.
    Thanassi JW; Nutter LM; Meisler NT; Commers P; Chiu JF
    J Biol Chem; 1981 Apr; 256(7):3370-5. PubMed ID: 6259164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.