These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32258906)

  • 1. Formation of Fine Particles from Curcumin/PVP by the Supercritical Antisolvent Process with a Coaxial Nozzle.
    Machmudah S; Winardi S; Wahyudiono ; Kanda H; Goto M
    ACS Omega; 2020 Mar; 5(12):6705-6714. PubMed ID: 32258906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of
    Machmudah S; Mahardika RP; Almadilla S; Winardi S; Wahyudiono ; Kanda H; Goto M
    ACS Omega; 2022 Feb; 7(7):6345-6353. PubMed ID: 35224396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antisolvent precipitation technique: A very promising approach to crystallize curcumin in presence of polyvinyl pyrrolidon for solubility and dissolution enhancement.
    Sadeghi F; Ashofteh M; Homayouni A; Abbaspour M; Nokhodchi A; Garekani HA
    Colloids Surf B Biointerfaces; 2016 Nov; 147():258-264. PubMed ID: 27518458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supercritical CO
    Sadeghi F; Kamali H; Kouhestanian S; Hadizadeh F; Nokhodchi A; Afrasiabi Garekani H
    Pharm Dev Technol; 2022 Dec; 27(10):999-1008. PubMed ID: 36322612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of high pressure homogenization on physicochemical properties of curcumin nanoparticles prepared by antisolvent crystallization using HPMC or PVP.
    Homayouni A; Sohrabi M; Amini M; Varshosaz J; Nokhodchi A
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():185-196. PubMed ID: 30813018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and physicochemical properties of vinblastine microparticles by supercritical antisolvent process.
    Zhang X; Zhao X; Zu Y; Chen X; Lu Q; Ma Y; Yang L
    Int J Mol Sci; 2012 Oct; 13(10):12598-607. PubMed ID: 23202916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curcumin/Carrier Coprecipitation by Supercritical Antisolvent Route.
    Mottola S; De Marco I
    Pharmaceutics; 2024 Mar; 16(3):. PubMed ID: 38543246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2.
    Zhao Z; Xie M; Li Y; Chen A; Li G; Zhang J; Hu H; Wang X; Li S
    Int J Nanomedicine; 2015; 10():3171-81. PubMed ID: 25995627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled morphology and size of curcumin using ultrasound in supercritical CO2 antisolvent.
    Jia J; Wang W; Gao Y; Zhao Y
    Ultrason Sonochem; 2015 Nov; 27():389-394. PubMed ID: 26186858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Preparation of curcumin-EC sustained-release composite particles by supercritical CO2 anti-solvent technology].
    Bai WL; Yan TY; Wang ZX; Huang DC; Yan TX; Li P
    Zhongguo Zhong Yao Za Zhi; 2015 Jan; 40(2):226-30. PubMed ID: 26080549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micronization of insulin from halogenated alcohol solution using supercritical carbon dioxide as an antisolvent.
    Snavely WK; Subramaniam B; Rajewski RA; Defelippis MR
    J Pharm Sci; 2002 Sep; 91(9):2026-39. PubMed ID: 12210049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of the apparent solubility and bioavailability of Tadalafil nanoparticles via antisolvent precipitation.
    Rao Q; Qiu Z; Huang D; Lu T; Zhang ZJ; Luo D; Pan P; Zhang L; Liu Y; Guan S; Li Q
    Eur J Pharm Sci; 2019 Feb; 128():222-231. PubMed ID: 30553058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle preparation of pharmaceutical compounds using supercritical antisolvent process: current status and future perspectives.
    Kumar R; Thakur AK; Kali G; Pitchaiah KC; Arya RK; Kulabhi A
    Drug Deliv Transl Res; 2023 Apr; 13(4):946-965. PubMed ID: 36575354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of solid dispersions produced by supercritical antisolvent and spray-freezing technologies.
    Badens E; Majerik V; Horváth G; Szokonya L; Bosc N; Teillaud E; Charbit G
    Int J Pharm; 2009 Jul; 377(1-2):25-34. PubMed ID: 19442711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of wettability and dissolution properties of cilostazol using the supercritical antisolvent process: effect of various additives.
    Kim MS; Kim JS; Hwang SJ
    Chem Pharm Bull (Tokyo); 2010 Feb; 58(2):230-3. PubMed ID: 20118585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous micronization and purification of bioactive fraction by supercritical antisolvent technology.
    Hiendrawan S; Veriansyah B; Widjojokusumo E; Tjandrawinata RR
    J Adv Pharm Technol Res; 2017; 8(2):52-58. PubMed ID: 28516056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Preparation of ibuprofen/EC-PVP sustained-release composite particles by supercritical CO2 anti-solvent technology].
    Cai JY; Huang DC; Wang ZX; Dang BL; Wang QL; Su XG
    Yao Xue Xue Bao; 2012 Jun; 47(6):791-6. PubMed ID: 22919729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micronisation of simvastatin by the supercritical antisolvent technique: in vitro-in vivo evaluation.
    Patel JK; Sutariya VB
    J Microencapsul; 2015; 32(2):193-200. PubMed ID: 25535989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of Curcuma Longa L. Extract Nanoparticles Using Supercritical Solution Expansion.
    Momenkiaei F; Raofie F
    J Pharm Sci; 2019 Apr; 108(4):1581-1589. PubMed ID: 30439462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary evaluation of polymer-based drug composite microparticle production by coacervate desolvation with supercritical carbon dioxide.
    Yasuji T; Haslam J; Kajiyama A; McIntosh MP; Rajewski RA
    J Pharm Sci; 2006 Mar; 95(3):581-8. PubMed ID: 16419052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.