BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 32259133)

  • 1. Research progress of near-infrared fluorescence probes based on indole heptamethine cyanine dyes in vivo and in vitro.
    Sun C; Du W; Wang B; Dong B; Wang B
    BMC Chem; 2020 Dec; 14(1):21. PubMed ID: 32259133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress on near-infrared fluorescence heptamethine cyanine dye-based molecules and nanoparticles for tumor imaging and treatment.
    Qiu Y; Yuan B; Cao Y; He X; Akakuru OU; Lu L; Chen N; Xu M; Wu A; Li J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(5):e1910. PubMed ID: 37305979
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Thomas RG; Jeong YY
    Chonnam Med J; 2017 May; 53(2):83-94. PubMed ID: 28584786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Application of organic fluorescent probe-assisted near infrared fluorescence imaging in cervical cancer diagnosis].
    Zhu L; Zhang L; Zhou M; Alifu N
    Sheng Wu Gong Cheng Xue Bao; 2021 Aug; 37(8):2678-2687. PubMed ID: 34472288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of polymethine dyes as potential probes for near infrared fluorescence imaging of tumors: part - 1.
    James NS; Chen Y; Joshi P; Ohulchanskyy TY; Ethirajan M; Henary M; Strekowsk L; Pandey RK
    Theranostics; 2013; 3(9):692-702. PubMed ID: 24019854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sterically Shielded Heptamethine Cyanine Dyes for Bioconjugation and High Performance Near-Infrared Fluorescence Imaging.
    Li DH; Schreiber CL; Smith BD
    Angew Chem Int Ed Engl; 2020 Jul; 59(29):12154-12161. PubMed ID: 32324959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalizable synthesis of bioresponsive near-infrared fluorescent probes: sulfonated heptamethine cyanine prototype for imaging cell hypoxia.
    Atkinson KM; Morsby JJ; Kommidi SSR; Smith BD
    Org Biomol Chem; 2021 May; 19(18):4100-4106. PubMed ID: 33978049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-Activity Studies of Nitroreductase-Responsive Near-Infrared Heptamethine Cyanine Fluorescent Probes.
    Morsby JJ; Atkinson KM; Shradha Reddy Kommidi S; Freel T; Janeková H; Štacko P; Smith BD
    European J Org Chem; 2022 Jun; 2022(23):. PubMed ID: 38322783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doubly Strapped Zwitterionic NIR-I and NIR-II Heptamethine Cyanine Dyes for Bioconjugation and Fluorescence Imaging.
    Li DH; Gamage RS; Oliver AG; Patel NL; Muhammad Usama S; Kalen JD; Schnermann MJ; Smith BD
    Angew Chem Int Ed Engl; 2023 Jul; 62(28):e202305062. PubMed ID: 37163228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Counterion influence on near-infrared-II heptamethine cyanine salts for photothermal therapy.
    Zheng Y; Chen T; Gao Y; Chen H
    Bioorg Chem; 2024 Apr; 145():107206. PubMed ID: 38367428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and Optical Properties of Near-Infrared meso-Phenyl-Substituted Symmetric Heptamethine Cyanine Dyes.
    Levitz A; Marmarchi F; Henary M
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-Specific Labeling of Proteins with Near-IR Heptamethine Cyanine Dyes.
    Lin CM; Usama SM; Burgess K
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30405016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cu
    Hanmeng O; Chailek N; Charoenpanich A; Phuekvilai P; Yookongkaew N; Sanmanee N; Sirirak J; Swanglap P; Wanichacheva N
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Oct; 240():118606. PubMed ID: 32629406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyanine-Based Polymer Dots with Long-Wavelength Excitation and Near-Infrared Fluorescence beyond 900 nm for
    Liu MH; Chen TC; Vicente JR; Yao CN; Yang YC; Chen CP; Lin PW; Ho YC; Chen J; Lin SY; Chan YH
    ACS Appl Bio Mater; 2020 Jun; 3(6):3846-3858. PubMed ID: 35025255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Development of near-infrared fluorescent probes for in-vivo imaging].
    Kojima H
    Yakugaku Zasshi; 2008 Nov; 128(11):1653-63. PubMed ID: 18981701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Cyanine Conformational Restraint in the Near-Infrared Range.
    Matikonda SS; Hammersley G; Kumari N; Grabenhorst L; Glembockyte V; Tinnefeld P; Ivanic J; Levitus M; Schnermann MJ
    J Org Chem; 2020 May; 85(9):5907-5915. PubMed ID: 32275153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave synthesis of cyanine dyes.
    Winstead AJ; Williams R; Zhang Y; McLean C; Oyaghire S
    J Microw Power Electromagn Energy; 2010; 44(4):207-12. PubMed ID: 21721469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of unique xanthene-cyanine fused near-infrared fluorescent fluorophores with superior chemical stability for biological fluorescence imaging.
    Chen H; Lin W; Cui H; Jiang W
    Chemistry; 2015 Jan; 21(2):733-45. PubMed ID: 25388080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Tumor Uptake and Retention of Cyanine Dye-Albumin Complex for Tumor-Targeted Imaging and Phototherapy.
    Jo G; Kim EJ; Hyun H
    Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific near-infrared fluorescent labelling of proteins on cysteine residues with meso-chloro-substituted heptamethine cyanine dyes.
    Canovas C; Bellaye PS; Moreau M; Romieu A; Denat F; Goncalves V
    Org Biomol Chem; 2018 Nov; 16(45):8831-8836. PubMed ID: 30411777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.