BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32259207)

  • 1. CircMiner: accurate and rapid detection of circular RNA through splice-aware pseudo-alignment scheme.
    Asghari H; Lin YY; Xu Y; Haghshenas E; Collins CC; Hach F
    Bioinformatics; 2020 Jun; 36(12):3703-3711. PubMed ID: 32259207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. circMeta: a unified computational framework for genomic feature annotation and differential expression analysis of circular RNAs.
    Chen L; Wang F; Bruggeman EC; Li C; Yao B
    Bioinformatics; 2020 Jan; 36(2):539-545. PubMed ID: 31373611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AQUARIUM: accurate quantification of circular isoforms using model-based strategy.
    Wen G; Li M; Li F; Yang Z; Zhou T; Gu W
    Bioinformatics; 2021 Dec; 37(24):4879-4881. PubMed ID: 34115093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rolling Circle cDNA Synthesis Uncovers Circular RNA Splice Variants.
    Das A; Rout PK; Gorospe M; Panda AC
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31426285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. circtools-a one-stop software solution for circular RNA research.
    Jakobi T; Uvarovskii A; Dieterich C
    Bioinformatics; 2019 Jul; 35(13):2326-2328. PubMed ID: 30462173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circall: fast and accurate methodology for discovery of circular RNAs from paired-end RNA-sequencing data.
    Nguyen DT; Trac QT; Nguyen TH; Nguyen HN; Ohad N; Pawitan Y; Vu TN
    BMC Bioinformatics; 2021 Oct; 22(1):495. PubMed ID: 34645386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CircRNAFisher: a systematic computational approach for de novo circular RNA identification.
    Jia GY; Wang DL; Xue MZ; Liu YW; Pei YC; Yang YQ; Xu JM; Liang YC; Wang P
    Acta Pharmacol Sin; 2019 Jan; 40(1):55-63. PubMed ID: 30013032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive comparison of two types of algorithm for circRNA detection from short-read RNA-Seq.
    Liu H; Akhatayeva Z; Pan C; Liao M; Lan X
    Bioinformatics; 2022 May; 38(11):3037-3043. PubMed ID: 35482518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of circular RNAs and their internal splicing events from transcriptomic data.
    Zheng Y; Zhao F
    Bioinformatics; 2020 May; 36(9):2934-2935. PubMed ID: 31950978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ambiguous splice sites distinguish circRNA and linear splicing in the human genome.
    Dehghannasiri R; Szabo L; Salzman J
    Bioinformatics; 2019 Apr; 35(8):1263-1268. PubMed ID: 30192918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CircAST: Full-length Assembly and Quantification of Alternatively Spliced Isoforms in Circular RNAs.
    Wu J; Li Y; Wang C; Cui Y; Xu T; Wang C; Wang X; Sha J; Jiang B; Wang K; Hu Z; Guo X; Song X
    Genomics Proteomics Bioinformatics; 2019 Oct; 17(5):522-534. PubMed ID: 32007626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the biogenesis and potential functions of exonic circular RNA.
    Ragan C; Goodall GJ; Shirokikh NE; Preiss T
    Sci Rep; 2019 Feb; 9(1):2048. PubMed ID: 30765711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific identification and quantification of circular RNAs from sequencing data.
    Cheng J; Metge F; Dieterich C
    Bioinformatics; 2016 Apr; 32(7):1094-6. PubMed ID: 26556385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying circular RNA expression from RNA-seq data using model-based framework.
    Li M; Xie X; Zhou J; Sheng M; Yin X; Ko EA; Zhou T; Gu W
    Bioinformatics; 2017 Jul; 33(14):2131-2139. PubMed ID: 28334396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanopore long-read sequencing of circRNAs.
    Rahimi K; Færch Nielsen A; Venø MT; Kjems J
    Methods; 2021 Dec; 196():23-29. PubMed ID: 34571139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate quantification of circular RNAs identifies extensive circular isoform switching events.
    Zhang J; Chen S; Yang J; Zhao F
    Nat Commun; 2020 Jan; 11(1):90. PubMed ID: 31900416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. JEDI: circular RNA prediction based on junction encoders and deep interaction among splice sites.
    Jiang JY; Ju CJ; Hao J; Chen M; Wang W
    Bioinformatics; 2021 Jul; 37(Suppl_1):i289-i298. PubMed ID: 34252942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning of the back-splicing code for circular RNA formation.
    Wang J; Wang L
    Bioinformatics; 2019 Dec; 35(24):5235-5242. PubMed ID: 31077303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ACValidator: A novel assembly-based approach for
    Sekar S; Geiger P; Adkins J; Tassone E; Serrano G; Beach TG; Liang WS
    Biol Methods Protoc; 2020; 5(1):bpaa010. PubMed ID: 32793805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interplay between microRNA and alternative splicing of linear and circular RNAs in eleven plant species.
    Wang H; Wang H; Zhang H; Liu S; Wang Y; Gao Y; Xi F; Zhao L; Liu B; Reddy ASN; Lin C; Gu L
    Bioinformatics; 2019 Sep; 35(17):3119-3126. PubMed ID: 30689723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.