These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 32259256)
1. An Overexpression Experiment Does Not Support the Hypothesis That Avoidance of Toxicity Determines the Rate of Protein Evolution. Biesiadecka MK; Sliwa P; Tomala K; Korona R Genome Biol Evol; 2020 May; 12(5):589-596. PubMed ID: 32259256 [TBL] [Abstract][Full Text] [Related]
2. Evaluating the fitness cost of protein expression in Saccharomyces cerevisiae. Tomala K; Korona R Genome Biol Evol; 2013; 5(11):2051-60. PubMed ID: 24128940 [TBL] [Abstract][Full Text] [Related]
3. Fitness costs of minimal sequence alterations causing protein instability and toxicity. Tomala K; Pogoda E; Jakubowska A; Korona R Mol Biol Evol; 2014 Mar; 31(3):703-7. PubMed ID: 24361995 [TBL] [Abstract][Full Text] [Related]
4. Laboratory Evolution of a Biotin-Requiring Saccharomyces cerevisiae Strain for Full Biotin Prototrophy and Identification of Causal Mutations. Bracher JM; de Hulster E; Koster CC; van den Broek M; Daran JG; van Maris AJA; Pronk JT Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600311 [TBL] [Abstract][Full Text] [Related]
5. Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast. Geiler-Samerotte KA; Dion MF; Budnik BA; Wang SM; Hartl DL; Drummond DA Proc Natl Acad Sci U S A; 2011 Jan; 108(2):680-5. PubMed ID: 21187411 [TBL] [Abstract][Full Text] [Related]
7. Protein misinteraction avoidance causes highly expressed proteins to evolve slowly. Yang JR; Liao BY; Zhuang SM; Zhang J Proc Natl Acad Sci U S A; 2012 Apr; 109(14):E831-40. PubMed ID: 22416125 [TBL] [Abstract][Full Text] [Related]
8. Impact of translational error-induced and error-free misfolding on the rate of protein evolution. Yang JR; Zhuang SM; Zhang J Mol Syst Biol; 2010 Oct; 6():421. PubMed ID: 20959819 [TBL] [Abstract][Full Text] [Related]
9. Molecular Chaperones Accelerate the Evolution of Their Protein Clients in Yeast. Alvarez-Ponce D; Aguilar-Rodríguez J; Fares MA Genome Biol Evol; 2019 Aug; 11(8):2360-2375. PubMed ID: 31297528 [TBL] [Abstract][Full Text] [Related]
10. Using yeasts for the studies of nonfunctional factors in protein evolution. Potera K; Tomala K Yeast; 2024 Sep; 41(9):529-536. PubMed ID: 38895906 [TBL] [Abstract][Full Text] [Related]
11. Identification of translational regulation target genes during filamentous growth in Saccharomyces cerevisiae: regulatory role of Caf20 and Dhh1. Park YU; Hur H; Ka M; Kim J Eukaryot Cell; 2006 Dec; 5(12):2120-7. PubMed ID: 17041186 [TBL] [Abstract][Full Text] [Related]
12. Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast. Hawer H; Ütkür K; Arend M; Mayer K; Adrian L; Brinkmann U; Schaffrath R PLoS One; 2018; 13(10):e0205870. PubMed ID: 30335802 [TBL] [Abstract][Full Text] [Related]
13. The causes of protein evolutionary rate variation. McInerney JO Trends Ecol Evol; 2006 May; 21(5):230-2. PubMed ID: 16697908 [TBL] [Abstract][Full Text] [Related]
14. Do amino acid biosynthetic costs constrain protein evolution in Saccharomyces cerevisiae? Raiford DW; Heizer EM; Miller RV; Akashi H; Raymer ML; Krane DE J Mol Evol; 2008 Dec; 67(6):621-30. PubMed ID: 18937004 [TBL] [Abstract][Full Text] [Related]
15. Evolutionary constraints on yeast protein size. Warringer J; Blomberg A BMC Evol Biol; 2006 Aug; 6():61. PubMed ID: 16911784 [TBL] [Abstract][Full Text] [Related]
16. Swi/SNF-GCN5-dependent chromatin remodelling determines induced expression of GDH3, one of the paralogous genes responsible for ammonium assimilation and glutamate biosynthesis in Saccharomyces cerevisiae. Avendaño A; Riego L; DeLuna A; Aranda C; Romero G; Ishida C; Vázquez-Acevedo M; Rodarte B; Recillas-Targa F; Valenzuela L; Zonszein S; González A Mol Microbiol; 2005 Jul; 57(1):291-305. PubMed ID: 15948967 [TBL] [Abstract][Full Text] [Related]
17. [Identification of new genes that affect [PSI^(+)] prion toxicity in Saccharomyces cerevisiae yeast]. Matveenko AG; Belousov MV; Bondarev SA; Moskalenko SE; Zhouravleva GA Mol Biol (Mosk); 2016; 50(5):803-813. PubMed ID: 27830682 [TBL] [Abstract][Full Text] [Related]
19. Expression of the essential mRNA export factor Yra1p is autoregulated by a splicing-dependent mechanism. Preker PJ; Kim KS; Guthrie C RNA; 2002 Aug; 8(8):969-80. PubMed ID: 12212852 [TBL] [Abstract][Full Text] [Related]
20. Overexpression of budding yeast protein phosphatase Ppz1 impairs translation. Calafí C; López-Malo M; Velázquez D; Zhang C; Fernández-Fernández J; Rodríguez-Galán O; de la Cruz J; Ariño J; Casamayor A Biochim Biophys Acta Mol Cell Res; 2020 Aug; 1867(8):118727. PubMed ID: 32339526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]