BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32259333)

  • 21. Tyrosine 110 plays a critical role in regulating the allosteric inhibition of Campylobacter jejuni dihydrodipicolinate synthase by lysine.
    Conly CJ; Skovpen YV; Li S; Palmer DR; Sanders DA
    Biochemistry; 2014 Dec; 53(47):7396-406. PubMed ID: 25369463
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanomolar competitive inhibitors of Mycobacterium tuberculosis and Streptomyces coelicolor type II dehydroquinase.
    Prazeres VF; Sánchez-Sixto C; Castedo L; Lamb H; Hawkins AR; Riboldi-Tunnicliffe A; Coggins JR; Lapthorn AJ; González-Bello C
    ChemMedChem; 2007 Feb; 2(2):194-207. PubMed ID: 17245805
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure of human epoxide hydrolase reveals mechanistic inferences on bifunctional catalysis in epoxide and phosphate ester hydrolysis.
    Gomez GA; Morisseau C; Hammock BD; Christianson DW
    Biochemistry; 2004 Apr; 43(16):4716-23. PubMed ID: 15096040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic Modelling Reveals 'Hotspots' on the Pathway to Enzyme-Substrate Complex Formation.
    Gordon SE; Weber DK; Downton MT; Wagner J; Perugini MA
    PLoS Comput Biol; 2016 Mar; 12(3):e1004811. PubMed ID: 26967332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A functionally diverse enzyme superfamily that abstracts the alpha protons of carboxylic acids.
    Babbitt PC; Mrachko GT; Hasson MS; Huisman GW; Kolter R; Ringe D; Petsko GA; Kenyon GL; Gerlt JA
    Science; 1995 Feb; 267(5201):1159-61. PubMed ID: 7855594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experiences with the shikimate-pathway enzymes as targets for rational drug design.
    Coggins JR; Abell C; Evans LB; Frederickson M; Robinson DA; Roszak AW; Lapthorn AP
    Biochem Soc Trans; 2003 Jun; 31(Pt 3):548-52. PubMed ID: 12773154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of dihydrodipicolinate synthase of Nicotiana sylvestris reveals novel quaternary structure.
    Blickling S; Beisel HG; Bozic D; Knäblein J; Laber B; Huber R
    J Mol Biol; 1997 Dec; 274(4):608-21. PubMed ID: 9417939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inversion of the roles of the nucleophile and acid/base catalysts in the covalent binding of epoxyalkyl xyloside inhibitor to the catalytic glutamates of endo-1,4-beta-xylanase (XYNII): a molecular dynamics study.
    Laitinen T; Rouvinen J; Peräkylä M
    Protein Eng; 2000 Apr; 13(4):247-52. PubMed ID: 10810155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovery of imidazole glycerol phosphate dehydratase inhibitors through 3-D database searching.
    Schweitzer BA; Loida PJ; CaJacob CA; Chott RC; Collantes EM; Hegde SG; Mosier PD; Profeta S
    Bioorg Med Chem Lett; 2002 Jul; 12(13):1743-6. PubMed ID: 12067551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and functional characterization of Staphylococcus aureus dihydrodipicolinate synthase.
    Girish TS; Sharma E; Gopal B
    FEBS Lett; 2008 Aug; 582(19):2923-30. PubMed ID: 18671976
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural investigation of inhibitor designs targeting 3-dehydroquinate dehydratase from the shikimate pathway of Mycobacterium tuberculosis.
    Dias MV; Snee WC; Bromfield KM; Payne RJ; Palaninathan SK; Ciulli A; Howard NI; Abell C; Sacchettini JC; Blundell TL
    Biochem J; 2011 Jun; 436(3):729-39. PubMed ID: 21410435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purification, characterization and amino acid sequence of a novel enzyme, D-threo-3-hydroxyaspartate dehydratase, from Delftia sp. HT23.
    Maeda T; Takeda Y; Murakami T; Yokota A; Wada M
    J Biochem; 2010 Dec; 148(6):705-12. PubMed ID: 20843822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. β-Hydroxyacyl-acyl Carrier Protein Dehydratase (FabZ) from Francisella tularensis and Yersinia pestis: Structure Determination, Enzymatic Characterization, and Cross-Inhibition Studies.
    McGillick BE; Kumaran D; Vieni C; Swaminathan S
    Biochemistry; 2016 Feb; 55(7):1091-9. PubMed ID: 26818694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Progress in type II dehydroquinase inhibitors: from concept to practice.
    González-Bello C; Castedo L
    Med Res Rev; 2007 Mar; 27(2):177-208. PubMed ID: 17004270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative binding energy COMBINE analysis for understanding the binding determinants of type II dehydroquinase inhibitors.
    Peón A; Coderch C; Gago F; González-Bello C
    ChemMedChem; 2013 May; 8(5):740-7. PubMed ID: 23450741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New insights into the mechanism of the Schiff base hydrolysis catalyzed by type I dehydroquinate dehydratase from S. enterica: a theoretical study.
    Yao Y; Li ZS
    Org Biomol Chem; 2012 Sep; 10(35):7037-44. PubMed ID: 22847490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. QM/MM simulations identify the determinants of catalytic activity differences between type II dehydroquinase enzymes.
    Lence E; van der Kamp MW; González-Bello C; Mulholland AJ
    Org Biomol Chem; 2018 Jun; 16(24):4443-4455. PubMed ID: 29767194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibitors of lysine biosynthesis as antibacterial agents.
    Hutton CA; Southwood TJ; Turner JJ
    Mini Rev Med Chem; 2003 Mar; 3(2):115-27. PubMed ID: 12570844
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ) from Helicobacter pylori: Molecular cloning, enzymatic characterization, and structural modeling.
    Liu W; Luo C; Han C; Peng S; Yang Y; Yue J; Shen X; Jiang H
    Biochem Biophys Res Commun; 2005 Aug; 333(4):1078-86. PubMed ID: 15967411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Designing Irreversible Inhibitors--Worth the Effort?
    González-Bello C
    ChemMedChem; 2016 Jan; 11(1):22-30. PubMed ID: 26593241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.