BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32259520)

  • 1. Natural size variation among embryos leads to the corresponding scaling in gene expression.
    Leibovich A; Edri T; Klein SL; Moody SA; Fainsod A
    Dev Biol; 2020 Jun; 462(2):165-179. PubMed ID: 32259520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of the ALK1 family of type I BMP/ADMP receptors during gastrula stages in Xenopus embryos.
    Leibovich A; Steinbeißer H; Fainsod A
    Int J Dev Biol; 2017; 61(6-7):465-470. PubMed ID: 28695967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BMP antagonism by Spemann's organizer regulates rostral-caudal fate of mesoderm.
    Constance Lane M; Davidson L; Sheets MD
    Dev Biol; 2004 Nov; 275(2):356-74. PubMed ID: 15501224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted search for scaling genes reveals matrixmetalloproteinase 3 as a scaler of the dorsal-ventral pattern in Xenopus laevis embryos.
    Orlov EE; Nesterenko AM; Korotkova DD; Parshina EA; Martynova NY; Zaraisky AG
    Dev Cell; 2022 Jan; 57(1):95-111.e12. PubMed ID: 34919801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ADMP controls the size of Spemann's organizer through a network of self-regulating expansion-restriction signals.
    Leibovich A; Kot-Leibovich H; Ben-Zvi D; Fainsod A
    BMC Biol; 2018 Jan; 16(1):13. PubMed ID: 29357852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal analysis of the early BMP functions identifies distinct anti-organizer and mesoderm patterning phases.
    Marom K; Levy V; Pillemer G; Fainsod A
    Dev Biol; 2005 Jun; 282(2):442-54. PubMed ID: 15950609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos.
    Wu MY; Ramel MC; Howell M; Hill CS
    PLoS Biol; 2011 Feb; 9(2):e1000593. PubMed ID: 21358802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ADHFe1: a novel enzyme involved in retinoic acid-dependent Hox activation.
    Shabtai Y; Shukrun N; Fainsod A
    Int J Dev Biol; 2017; 61(3-4-5):303-310. PubMed ID: 28621427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling.
    Hikasa H; Shibata M; Hiratani I; Taira M
    Development; 2002 Nov; 129(22):5227-39. PubMed ID: 12399314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis.
    Zohn IE; Brivanlou AH
    Dev Biol; 2001 Nov; 239(1):118-31. PubMed ID: 11784023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling of the BMP activation gradient in Xenopus embryos.
    Ben-Zvi D; Shilo BZ; Fainsod A; Barkai N
    Nature; 2008 Jun; 453(7199):1205-11. PubMed ID: 18580943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zygotic expression of Exostosin1 (Ext1) is required for BMP signaling and establishment of dorsal-ventral pattern in Xenopus.
    Shieh YE; Wells DE; Sater AK
    Int J Dev Biol; 2014; 58(1):27-34. PubMed ID: 24860992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FoxD1 protein interacts with Wnt and BMP signaling to differentially pattern mesoderm and neural tissue.
    Polevoy H; Malyarova A; Fonar Y; Elias S; Frank D
    Int J Dev Biol; 2017; 61(3-4-5):293-302. PubMed ID: 28621426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing.
    Popov IK; Kwon T; Crossman DK; Crowley MR; Wallingford JB; Chang C
    Dev Biol; 2017 Jun; 426(2):429-441. PubMed ID: 27209239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depletion of three BMP antagonists from Spemann's organizer leads to a catastrophic loss of dorsal structures.
    Khokha MK; Yeh J; Grammer TC; Harland RM
    Dev Cell; 2005 Mar; 8(3):401-11. PubMed ID: 15737935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial and temporal properties of ventral blood island induction in Xenopus laevis.
    Kumano G; Belluzzi L; Smith WC
    Development; 1999 Dec; 126(23):5327-37. PubMed ID: 10556058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xmsx-1 modifies mesodermal tissue pattern along dorsoventral axis in Xenopus laevis embryo.
    Maeda R; Kobayashi A; Sekine R; Lin JJ; Kung H; Maéno M
    Development; 1997 Jul; 124(13):2553-60. PubMed ID: 9216997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boundaries and functional domains in the animal/vegetal axis of Xenopus gastrula mesoderm.
    Kumano G; Ezal C; Smith WC
    Dev Biol; 2001 Aug; 236(2):465-77. PubMed ID: 11476585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm.
    Kikkawa M; Yamazaki M; Izutsu Y; Maéno M
    Int J Dev Biol; 2001 Apr; 45(2):387-96. PubMed ID: 11330858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterning the embryonic kidney: BMP signaling mediates the differentiation of the pronephric tubules and duct in Xenopus laevis.
    Bracken CM; Mizeracka K; McLaughlin KA
    Dev Dyn; 2008 Jan; 237(1):132-44. PubMed ID: 18069689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.