BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32259520)

  • 21. Role of BMP-4 in the inducing ability of the head organizer in Xenopus laevis.
    Sedohara A; Fukui A; Michiue T; Asashima M
    Zoolog Sci; 2002 Jan; 19(1):67-80. PubMed ID: 12025406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Xema, a foxi-class gene expressed in the gastrula stage Xenopus ectoderm, is required for the suppression of mesendoderm.
    Suri C; Haremaki T; Weinstein DC
    Development; 2005 Jun; 132(12):2733-42. PubMed ID: 15901660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gene profiling during neural induction in Xenopus laevis: regulation of BMP signaling by post-transcriptional mechanisms and TAB3, a novel TAK1-binding protein.
    Muñoz-Sanjuán I; Bell E; Altmann CR; Vonica A; Brivanlou AH
    Development; 2002 Dec; 129(23):5529-40. PubMed ID: 12403722
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression of activated MAP kinase in Xenopus laevis embryos: evaluating the roles of FGF and other signaling pathways in early induction and patterning.
    Curran KL; Grainger RM
    Dev Biol; 2000 Dec; 228(1):41-56. PubMed ID: 11087625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Xenopus hairy2b specifies anterior prechordal mesoderm identity within Spemann's organizer.
    Yamaguti M; Cho KW; Hashimoto C
    Dev Dyn; 2005 Sep; 234(1):102-13. PubMed ID: 16059909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Establishment of mesodermal gene expression patterns in early Xenopus embryos: the role of repression.
    Kurth T; Meissner S; Schäckel S; Steinbeisser H
    Dev Dyn; 2005 Jun; 233(2):418-29. PubMed ID: 15779047
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The involvement of cAMP signaling pathway in axis specification in Xenopus embryos.
    Kim MJ; Han JK
    Mech Dev; 1999 Dec; 89(1-2):55-64. PubMed ID: 10559480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Involvement of AP-2rep in morphogenesis of the axial mesoderm in Xenopus embryo.
    Saito Y; Gotoh M; Ujiie Y; Izutsu Y; Maéno M
    Cell Tissue Res; 2009 Feb; 335(2):357-69. PubMed ID: 19048294
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Watanabe T; Yamamoto T; Tsukano K; Hirano S; Horikawa A; Michiue T
    Development; 2018 Oct; 145(20):. PubMed ID: 30291163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scaling of dorsal-ventral patterning by embryo size-dependent degradation of Spemann's organizer signals.
    Inomata H; Shibata T; Haraguchi T; Sasai Y
    Cell; 2013 Jun; 153(6):1296-311. PubMed ID: 23746842
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Signals that instruct somite and myotome formation persist in Xenopus laevis early tailbud stage embryos.
    Dali L; Gustin J; Perry K; Domingo CR
    Cells Tissues Organs; 2002; 172(1):1-12. PubMed ID: 12364823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway.
    Takahashi C; Suzuki T; Nishida E; Kusakabe M
    Int J Dev Biol; 2012; 56(5):393-402. PubMed ID: 22811273
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FGF signaling restricts the primary blood islands to ventral mesoderm.
    Kumano G; Smith WC
    Dev Biol; 2000 Dec; 228(2):304-14. PubMed ID: 11112331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zebrafish admp is required to restrict the size of the organizer and to promote posterior and ventral development.
    Lele Z; Nowak M; Hammerschmidt M
    Dev Dyn; 2001 Dec; 222(4):681-7. PubMed ID: 11748836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In Xenopus embryos, BMP heterodimers are not required for mesoderm induction, but BMP activity is necessary for dorsal/ventral patterning.
    Eimon PM; Harland RM
    Dev Biol; 1999 Dec; 216(1):29-40. PubMed ID: 10588861
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvement of BMP-4/msx-1 and FGF pathways in neural induction in the Xenopus embryo.
    Ishimura A; Maeda R; Takeda M; Kikkawa M; Daar IO; Maéno M
    Dev Growth Differ; 2000 Aug; 42(4):307-16. PubMed ID: 10969730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of ERK activity duration by Sprouty contributes to dorsoventral patterning.
    Hanafusa H; Matsumoto K; Nishida E
    Nat Cell Biol; 2009 Jan; 11(1):106-9. PubMed ID: 19122596
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dorsalization of the neural tube by Xenopus tiarin, a novel patterning factor secreted by the flanking nonneural head ectoderm.
    Tsuda H; Sasai N; Matsuo-Takasaki M; Sakuragi M; Murakami Y; Sasai Y
    Neuron; 2002 Feb; 33(4):515-28. PubMed ID: 11856527
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Blastomere derivation and domains of gene expression in the Spemann Organizer of Xenopus laevis.
    Vodicka MA; Gerhart JC
    Development; 1995 Nov; 121(11):3505-18. PubMed ID: 8582265
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential regulation of chordin expression domains in mutant zebrafish.
    Miller-Bertoglio VE; Fisher S; Sánchez A; Mullins MC; Halpern ME
    Dev Biol; 1997 Dec; 192(2):537-50. PubMed ID: 9441687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.