BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32260104)

  • 1. The Secondary Structure of a Major Wine Protein is Modified upon Interaction with Polyphenols.
    Di Gaspero M; Ruzza P; Hussain R; Honisch C; Biondi B; Siligardi G; Marangon M; Curioni A; Vincenzi S
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32260104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopy reveals that ethyl esters interact with proteins in wine.
    Di Gaspero M; Ruzza P; Hussain R; Vincenzi S; Biondi B; Gazzola D; Siligardi G; Curioni A
    Food Chem; 2017 Feb; 217():373-378. PubMed ID: 27664648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of haze forming proteins in white wines: Vitis vinifera thaumatin-like proteins.
    Marangon M; Van Sluyter SC; Waters EJ; Menz RI
    PLoS One; 2014; 9(12):e113757. PubMed ID: 25463627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of Conformational and Ligand Binding Properties of Membrane Proteins Using Synchrotron Radiation Circular Dichroism (SRCD).
    Hussain R; Siligardi G
    Adv Exp Med Biol; 2016; 922():43-59. PubMed ID: 27553234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme-Ligand Interaction Monitored by Synchrotron Radiation Circular Dichroism.
    Hussain R; Hughes CS; Siligardi G
    Methods Mol Biol; 2020; 2089():87-118. PubMed ID: 31773649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of peanut allergen Ara h 2 with Vaccinium fruit polyphenols.
    Plundrich NJ; Cook BT; Maleki SJ; Fourches D; Lila MA
    Food Chem; 2019 Jun; 284():287-295. PubMed ID: 30744860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenolic characteristics acquired by berry skins of Vitis vinifera cv. Tempranillo in response to close-to-ambient solar ultraviolet radiation are mostly reflected in the resulting wines.
    Del-Castillo-Alonso MÁ; Monforte L; Tomás-Las-Heras R; Martínez-Abaigar J; Núñez-Olivera E
    J Sci Food Agric; 2020 Jan; 100(1):401-409. PubMed ID: 31637723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand- and drug-binding studies of membrane proteins revealed through circular dichroism spectroscopy.
    Siligardi G; Hussain R; Patching SG; Phillips-Jones MK
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):34-42. PubMed ID: 23811229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microencapsulation and storage stability of polyphenols from Vitis vinifera grape wastes.
    Aizpurua-Olaizola O; Navarro P; Vallejo A; Olivares M; Etxebarria N; Usobiaga A
    Food Chem; 2016 Jan; 190():614-621. PubMed ID: 26213018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant Thaumatin-Like Protein (rTLP) and Chitinase (rCHI) from
    Albuquerque W; Sturm P; Schneider Q; Ghezellou P; Seidel L; Bakonyi D; Will F; Spengler B; Zorn H; Gand M
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal stability of thaumatin-like protein, chitinase, and invertase isolated from Sauvignon blanc and Semillon juice and their role in haze formation in wine.
    Falconer RJ; Marangon M; Van Sluyter SC; Neilson KA; Chan C; Waters EJ
    J Agric Food Chem; 2010 Jan; 58(2):975-80. PubMed ID: 20014848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grape and wine polymeric polyphenols: Their importance in enology.
    Li L; Sun B
    Crit Rev Food Sci Nutr; 2019; 59(4):563-579. PubMed ID: 28933917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of elevated CO2 on grapevine (Vitis vinifera L.): volatile composition, phenolic content, and in vitro antioxidant activity of red wine.
    Gonçalves B; Falco V; Moutinho-Pereira J; Bacelar E; Peixoto F; Correia C
    J Agric Food Chem; 2009 Jan; 57(1):265-73. PubMed ID: 19072054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Review on Stems Composition and Their Impact on Wine Quality.
    Blackford M; Comby M; Zeng L; Dienes-Nagy Á; Bourdin G; Lorenzini F; Bach B
    Molecules; 2021 Feb; 26(5):. PubMed ID: 33669129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Part I. Polyphenols composition and antioxidant potential during 'Blaufränkisch' grape maceration and red wine maturation, and the effects of trans-resveratrol addition.
    Poklar Ulrih N; Opara R; Skrt M; Košmerl T; Wondra M; Abram V
    Food Chem Toxicol; 2020 Mar; 137():111122. PubMed ID: 31931073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Clonal Variability on Phenolics and Radical Scavenging Activity of Grapes and Wines: A Study on the Recently Developed Merlot and Cabernet Franc Clones (Vitis vinifera L.).
    Pantelić M; Dabić Zagorac D; Natić M; Gašić U; Jović S; Vujović D; Djordjević JP
    PLoS One; 2016; 11(10):e0163823. PubMed ID: 27732619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of high hydrostatic pressure (HHP) on the protein structure and thermal stability of Sauvignon blanc wine.
    Tabilo-Munizaga G; Gordon TA; Villalobos-Carvajal R; Moreno-Osorio L; Salazar FN; Pérez-Won M; Acuña S
    Food Chem; 2014 Jul; 155():214-20. PubMed ID: 24594177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of grape tannins and wine polyphenols with a yeast protein extract, mannoproteins and β-glucan.
    Mekoue Nguela J; Poncet-Legrand C; Sieczkowski N; Vernhet A
    Food Chem; 2016 Nov; 210():671-82. PubMed ID: 27211695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of polyphenolic metabolites in the seeds of Vitis germplasm.
    Liang Z; Yang Y; Cheng L; Zhong GY
    J Agric Food Chem; 2012 Feb; 60(5):1291-9. PubMed ID: 22229810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyphenol Profiles of Just Pruned Grapevine Canes from Wild
    Loupit G; Prigent S; Franc C; De Revel G; Richard T; Cookson SJ; Fonayet JV
    J Agric Food Chem; 2020 Nov; 68(47):13397-13407. PubMed ID: 32227944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.