These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32260172)

  • 1. Production of Biodiesel and High-Protein Feed from Fish Processing Wastes Using In Situ Transesterification.
    Zhang T; Du B; Lin Y; Zhang M; Liu Y
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32260172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound-enhanced rapid in situ transesterification of marine macroalgae Enteromorpha compressa for biodiesel production.
    Suganya T; Kasirajan R; Renganathan S
    Bioresour Technol; 2014 Mar; 156():283-90. PubMed ID: 24508906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel.
    Cheirsilp B; Louhasakul Y
    Bioresour Technol; 2013 Aug; 142():329-37. PubMed ID: 23747444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient solvothermal wet in situ transesterification of Nannochloropsis gaditana for biodiesel production.
    Kim B; Chang YK; Lee JW
    Bioprocess Biosyst Eng; 2017 May; 40(5):723-730. PubMed ID: 28210816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the Potential of Oleaginous Yeasts as Feedstock for Biodiesel Production.
    Mukhtar H; Suliman SM; Shabbir A; Mumtaz MW; Rashid U; Rahimuddin SA
    Protein Pept Lett; 2018; 25(2):195-201. PubMed ID: 29359654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial biodiesel production by direct methanolysis of oleaginous biomass.
    Thliveros P; Uçkun Kiran E; Webb C
    Bioresour Technol; 2014 Apr; 157():181-7. PubMed ID: 24556371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of dried Aspergillus candidus mycelia grown on waste whey to biodiesel by in situ acid transesterification.
    Kakkad H; Khot M; Zinjarde S; RaviKumar A; Ravi Kumar V; Kulkarni BD
    Bioresour Technol; 2015 Dec; 197():502-7. PubMed ID: 26362462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of biodiesel production from marine alga, Scenedesmus sp. through in situ transesterification process associated with acidic catalyst.
    Kim GV; Choi W; Kang D; Lee S; Lee H
    Biomed Res Int; 2014; 2014():391542. PubMed ID: 24689039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved biomass and lipid production in Synechocystis sp. NN using industrial wastes and nano-catalyst coupled transesterification for biodiesel production.
    Jawaharraj K; Karpagam R; Ashokkumar B; Kathiresan S; Moorthy IMG; Arumugam M; Varalakshmi P
    Bioresour Technol; 2017 Oct; 242():128-132. PubMed ID: 28366691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant-assisted in situ transesterification of wet Rhodotorula glutinis biomass.
    Chen SJ; Kuan IC; Tu YF; Lee SL; Yu CY
    J Biosci Bioeng; 2020 Oct; 130(4):397-401. PubMed ID: 32586661
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Gufrana T; Islam H; Khare S; Pandey A; P R
    Prep Biochem Biotechnol; 2023; 53(2):120-135. PubMed ID: 35499507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial biodiesel production from industrial organic wastes by oleaginous microorganisms: Current status and prospects.
    Zhang L; Loh KC; Kuroki A; Dai Y; Tong YW
    J Hazard Mater; 2021 Jan; 402():123543. PubMed ID: 32739727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detergent assisted ultrasonication aided in situ transesterification for biodiesel production from oleaginous yeast wet biomass.
    Yellapu SK; Kaur R; Tyagi RD
    Bioresour Technol; 2017 Jan; 224():365-372. PubMed ID: 27866805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ pyrogenic production of biodiesel from swine fat.
    Lee J; Tsang YF; Jung JM; Oh JI; Kim HW; Kwon EE
    Bioresour Technol; 2016 Nov; 220():442-447. PubMed ID: 27611027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of biodiesel yield and characteristics through in-situ solvo-thermal co-transesterification of wet microalgae with spent coffee grounds.
    Abomohra AE; Zheng X; Wang Q; Huang J; Ebaid R
    Bioresour Technol; 2021 Mar; 323():124640. PubMed ID: 33421829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodiesel Production from Citrillus colocynthis Oil Using Enzymatic Based Catalytic Reaction and Characterization Studies.
    Nehdi IA; Sbihi HM; Blidi LE; Rashid U; Tan CP; Al-Resayes SI
    Protein Pept Lett; 2018; 25(2):164-170. PubMed ID: 28240158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ transesterification of highly wet microalgae using hydrochloric acid.
    Kim B; Im H; Lee JW
    Bioresour Technol; 2015 Jun; 185():421-5. PubMed ID: 25769690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review.
    Lam MK; Lee KT; Mohamed AR
    Biotechnol Adv; 2010; 28(4):500-18. PubMed ID: 20362044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes.
    Chen CL; Huang CC; Ho KC; Hsiao PX; Wu MS; Chang JS
    Bioresour Technol; 2015 Oct; 194():179-86. PubMed ID: 26196418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-quality vegetable oils as feedstock for biodiesel production using K-pumice as solid catalyst. Tolerance of water and free fatty acids contents.
    Díaz L; Borges ME
    J Agric Food Chem; 2012 Aug; 60(32):7928-33. PubMed ID: 22799882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.