These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32260334)

  • 1. Strength of Graphene-Coated Ni Bi-Crystals: A Molecular Dynamics Nano-Indentation Study.
    Vardanyan VH; Urbassek HM
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32260334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of misorientation on the grain boundary energy in bi-crystal copper: an atomistic simulation study.
    Wang K; Zhang W; Xu J; Dan W
    J Mol Model; 2022 Jan; 28(2):47. PubMed ID: 35080686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoindentation cannot accurately predict the tensile strength of graphene or other 2D materials.
    Han J; Pugno NM; Ryu S
    Nanoscale; 2015 Oct; 7(38):15672-9. PubMed ID: 26350786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effects of Grain Boundary Misorientation on the Mechanical Properties and Mechanism of Plastic Deformation of Ni/Ni
    Ding J; Zhang SL; Tong Q; Wang LS; Huang X; Song K; Lu SQ
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33333827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the failure load and mechanism of polycrystalline graphene by nanoindentation.
    Sha ZD; Wan Q; Pei QX; Quek SS; Liu ZS; Zhang YW; Shenoy VB
    Sci Rep; 2014 Dec; 4():7437. PubMed ID: 25500732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strengthening in Metal/Graphene Composites: Capturing the Transition from Interface to Precipitate Hardening.
    Shuang F; Dai Z; Aifantis KE
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26610-26620. PubMed ID: 34038072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chirality and grain boundary effects on indentation mechanical properties of graphene coated on nickel foil.
    Yan Y; Lv J; Liu S
    Nanotechnology; 2018 Apr; 29(16):165703. PubMed ID: 29400313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Balancing strength, hardness and ductility of Cu
    Jian WR; Wang L; Yao XH; Luo SN
    Nanotechnology; 2018 Jan; 29(2):025701. PubMed ID: 29211689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of nanoindentation and scratch in Cu grain boundaries.
    Liang SW; Qiu RZ; Fang TH
    Beilstein J Nanotechnol; 2017; 8():2283-2295. PubMed ID: 29181285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural disjoining potential for grain-boundary premelting and grain coalescence from molecular-dynamics simulations.
    Fensin SJ; Olmsted D; Buta D; Asta M; Karma A; Hoyt JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031601. PubMed ID: 20365741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ni/Ni
    Zhou J; He Y; Shen J; Essa FA; Yu J
    Nanotechnology; 2021 Dec; 33(10):. PubMed ID: 34823240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites.
    Kim Y; Lee J; Yeom MS; Shin JW; Kim H; Cui Y; Kysar JW; Hone J; Jung Y; Jeon S; Han SM
    Nat Commun; 2013; 4():2114. PubMed ID: 23820590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of interface atomic structure on the deformation mechanisms of Ti
    Liu P; Han X; Sun D; Wang Q
    J Phys Condens Matter; 2019 Mar; 31(12):125002. PubMed ID: 30625453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide.
    Azizi A; Zou X; Ercius P; Zhang Z; Elías AL; Perea-López N; Stone G; Terrones M; Yakobson BI; Alem N
    Nat Commun; 2014 Sep; 5():4867. PubMed ID: 25202857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regain Strain-Hardening in High-Strength Metals by Nanofiller Incorporation at Grain Boundaries.
    Li Z; Wang H; Guo Q; Li Z; Xiong DB; Su Y; Gao H; Li X; Zhang D
    Nano Lett; 2018 Oct; 18(10):6255-6264. PubMed ID: 30193069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strengthening mechanisms of graphene in copper matrix nanocomposites: A molecular dynamics study.
    Zhang Y; An Q; Li J; Lu B; Wu W; Xia R
    J Mol Model; 2020 Nov; 26(12):335. PubMed ID: 33156482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics study of nano-indentation deformation behavior of Al/Al
    Mishra S; Pal S
    J Mol Model; 2023 Mar; 29(4):112. PubMed ID: 36967409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breaking the Intrinsic Strength-Ductility Tradeoff in Graphene-Metal Composites.
    Choi W; Das UD; Kim C; Kashani H; Kang W
    Small Methods; 2024 Jun; ():e2400252. PubMed ID: 38845080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter.
    Fu T; Peng X; Chen X; Weng S; Hu N; Li Q; Wang Z
    Sci Rep; 2016 Oct; 6():35665. PubMed ID: 27767046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Dynamics Study of the Nanoindentation Behavior of Cu
    Wu WP; Şopu D; Eckert J
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34071013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.