These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 32260431)

  • 1. Chemotactic Responses of Jurkat Cells in Microfluidic Flow-Free Gradient Chambers.
    Sonmez UM; Wood A; Justus K; Jiang W; Syed-Picard F; LeDuc PR; Kalinski P; Davidson LA
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32260431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. T cell chemotaxis in a simple microfluidic device.
    Lin F; Butcher EC
    Lab Chip; 2006 Nov; 6(11):1462-9. PubMed ID: 17066171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplexed Microfluidic Platform for Parallel Bacterial Chemotaxis Assays.
    Stehnach MR; Henshaw RJ; Floge SA; Guasto JS
    Bio Protoc; 2024 Sep; 14(17):e5062. PubMed ID: 39282234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of Chemotaxis and Cell-Cell Interactions in Cancer with Microfluidic Devices.
    Sai J; Rogers M; Hockemeyer K; Wikswo JP; Richmond A
    Methods Enzymol; 2016; 570():19-45. PubMed ID: 26921940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining whether observed eukaryotic cell migration indicates chemotactic responsiveness or random chemokinetic motion.
    Szatmary AC; Nossal R
    J Theor Biol; 2017 Jul; 425():103-112. PubMed ID: 28501636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chapter 15. A microfluidics-based method for chemoattractant gradients.
    Lin F
    Methods Enzymol; 2009; 461():333-47. PubMed ID: 19480926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Pillar-Free Diffusion Device for Studying Chemotaxis on Supported Lipid Bilayers.
    Hao J; Zhao W; Oh JM; Shen K
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of bacterial chemotaxis in flow-based microfluidic devices.
    Englert DL; Manson MD; Jayaraman A
    Nat Protoc; 2010 May; 5(5):864-72. PubMed ID: 20431532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of CXCL12-mediated chemotaxis of Jurkat cells by direct immunotoxicants.
    Shao J; Stout I; Volger OL; Hendriksen PJ; van Loveren H; Peijnenburg AA
    Arch Toxicol; 2016 Jul; 90(7):1685-94. PubMed ID: 26314263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of CCR7 mediated T cell transfectant migration using a microfluidic gradient generator.
    Wu X; Wu J; Li H; Legler DF; Marshall AJ; Lin F
    J Immunol Methods; 2015 Apr; 419():9-17. PubMed ID: 25733353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How to Get Away with Gradients.
    Comelles J; Castillo-Fernández Ó; Martínez E
    Adv Exp Med Biol; 2022; 1379():31-54. PubMed ID: 35760987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolution of chemotaxis assays from static models to physiologically relevant platforms.
    Toetsch S; Olwell P; Prina-Mello A; Volkov Y
    Integr Biol (Camb); 2009 Feb; 1(2):170-81. PubMed ID: 20023801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of cellular chemotaxis with ECIS/Taxis.
    Pietrosimone KM; Yin X; Knecht DA; Lynes MA
    J Vis Exp; 2012 Apr; (62):. PubMed ID: 22491349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Migration of connective tissue-derived cells is mediated by ultra-low concentration gradient fields of EGF.
    Kong Q; Majeska RJ; Vazquez M
    Exp Cell Res; 2011 Jul; 317(11):1491-502. PubMed ID: 21536028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell, isoform, and environment factors shape gradients and modulate chemotaxis.
    Chang SL; Cavnar SP; Takayama S; Luker GD; Linderman JJ
    PLoS One; 2015; 10(4):e0123450. PubMed ID: 25909600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic investigation of BDNF-enhanced neural stem cell chemotaxis in CXCL12 gradients.
    Xu H; Heilshorn SC
    Small; 2013 Feb; 9(4):585-95. PubMed ID: 23109183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fugetaxis of Cell-in-Catalytic-Coat Nanobiohybrids in Glucose Gradients.
    Rheem HB; Choi H; Yang S; Han S; Rhee SY; Jeong H; Lee KB; Lee Y; Kim IS; Lee H; Choi IS
    Small; 2023 Oct; 19(41):e2301431. PubMed ID: 37282761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic device for measuring cell migration towards substrate-bound and soluble chemokine gradients.
    Schwarz J; Bierbaum V; Merrin J; Frank T; Hauschild R; Bollenbach T; Tay S; Sixt M; Mehling M
    Sci Rep; 2016 Nov; 6():36440. PubMed ID: 27819270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic source-sink model reveals effects of biophysically distinct CXCL12 isoforms in breast cancer chemotaxis.
    Cavnar SP; Ray P; Moudgil P; Chang SL; Luker KE; Linderman JJ; Takayama S; Luker GD
    Integr Biol (Camb); 2014 May; 6(5):564-76. PubMed ID: 24675873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative roles of SDF-1α and EGF gradients on tumor cell migration revealed by a robust 3D microfluidic model.
    Kim BJ; Hannanta-anan P; Chau M; Kim YS; Swartz MA; Wu M
    PLoS One; 2013; 8(7):e68422. PubMed ID: 23869217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.