These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 32260541)
21. Structure-function analysis of silkworm sucrose hydrolase uncovers the mechanism of substrate specificity in GH13 subfamily 17 Miyazaki T; Park EY J Biol Chem; 2020 Jun; 295(26):8784-8797. PubMed ID: 32381508 [TBL] [Abstract][Full Text] [Related]
22. Discovery of solabiose phosphorylase and its application for enzymatic synthesis of solabiose from sucrose and lactose. Saburi W; Nihira T; Nakai H; Kitaoka M; Mori H Sci Rep; 2022 Jan; 12(1):259. PubMed ID: 34997180 [TBL] [Abstract][Full Text] [Related]
23. [Application of sucrose phosphorylase in glycosylation]. Jiang R; Ye K; Fan T; Lu Y; Zhu L; Chen X; Chen H Sheng Wu Gong Cheng Xue Bao; 2021 Jan; 37(1):112-129. PubMed ID: 33501794 [TBL] [Abstract][Full Text] [Related]
24. Advancements in the Heterologous Expression of Sucrose Phosphorylase and Its Molecular Modification for the Synthesis of Glycosylated Products. Zhang H; Zhu L; Zhou Z; Wang D; Yang J; Wang S; Lou T Molecules; 2024 Aug; 29(17):. PubMed ID: 39274934 [TBL] [Abstract][Full Text] [Related]
25. Development and Application of a High-Throughput Functional Metagenomic Screen for Glycoside Phosphorylases. Macdonald SS; Armstrong Z; Morgan-Lang C; Osowiecka M; Robinson K; Hallam SJ; Withers SG Cell Chem Biol; 2019 Jul; 26(7):1001-1012.e5. PubMed ID: 31080075 [TBL] [Abstract][Full Text] [Related]
26. Structural enzymology of Cellvibrio japonicus Agd31B protein reveals α-transglucosylase activity in glycoside hydrolase family 31. Larsbrink J; Izumi A; Hemsworth GR; Davies GJ; Brumer H J Biol Chem; 2012 Dec; 287(52):43288-99. PubMed ID: 23132856 [TBL] [Abstract][Full Text] [Related]
27. Functional characterization of a novel GH94 glycoside phosphorylase, 3-O-β-d-glucopyranosyl β-d-glucuronide phosphorylase, and implication of the metabolic pathway of acidic carbohydrates in Paenibacillus borealis. Isono N; Mizutani E; Hayashida H; Katsuzaki H; Saburi W Biochem Biophys Res Commun; 2022 Oct; 625():60-65. PubMed ID: 35947916 [TBL] [Abstract][Full Text] [Related]
28. N-acetylglucosaminidases from CAZy family GH3 are really glycoside phosphorylases, thereby explaining their use of histidine as an acid/base catalyst in place of glutamic acid. Macdonald SS; Blaukopf M; Withers SG J Biol Chem; 2015 Feb; 290(8):4887-4895. PubMed ID: 25533455 [TBL] [Abstract][Full Text] [Related]
29. Strategies for the synthesis of the osmolyte glucosylglycerate and its precursor glycerate. Allaert Y; Leyder A; Franceus J; Desmet T Appl Microbiol Biotechnol; 2024 Apr; 108(1):297. PubMed ID: 38607564 [TBL] [Abstract][Full Text] [Related]
30. Rational engineering of Lactobacillus acidophilus NCFM maltose phosphorylase into either trehalose or kojibiose dual specificity phosphorylase. Nakai H; Petersen BO; Westphal Y; Dilokpimol A; Abou Hachem M; Duus JØ; Schols HA; Svensson B Protein Eng Des Sel; 2010 Oct; 23(10):781-7. PubMed ID: 20713411 [TBL] [Abstract][Full Text] [Related]
31. Unraveling the subtleties of β-(1→3)-glucan phosphorylase specificity in the GH94, GH149, and GH161 glycoside hydrolase families. Kuhaudomlarp S; Pergolizzi G; Patron NJ; Henrissat B; Field RA J Biol Chem; 2019 Apr; 294(16):6483-6493. PubMed ID: 30819804 [TBL] [Abstract][Full Text] [Related]
32. GH13 amylosucrases and GH70 branching sucrases, atypical enzymes in their respective families. Moulis C; André I; Remaud-Simeon M Cell Mol Life Sci; 2016 Jul; 73(14):2661-79. PubMed ID: 27141938 [TBL] [Abstract][Full Text] [Related]
34. Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases. Bissaro B; Monsan P; Fauré R; O'Donohue MJ Biochem J; 2015 Apr; 467(1):17-35. PubMed ID: 25793417 [TBL] [Abstract][Full Text] [Related]
35. Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group. Sawano T; Saburi W; Hamura K; Matsui H; Mori H FEBS J; 2013 Sep; 280(18):4463-73. PubMed ID: 23802549 [TBL] [Abstract][Full Text] [Related]
36. Unravelling the Specificity of Laminaribiose Phosphorylase from Paenibacillus sp. YM-1 towards Donor Substrates Glucose/Mannose 1-Phosphate by Using X-ray Crystallography and Saturation Transfer Difference NMR Spectroscopy. Kuhaudomlarp S; Walpole S; Stevenson CEM; Nepogodiev SA; Lawson DM; Angulo J; Field RA Chembiochem; 2019 Jan; 20(2):181-192. PubMed ID: 29856496 [TBL] [Abstract][Full Text] [Related]
38. Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two GH130 subfamilies. Ye Y; Saburi W; Odaka R; Kato K; Sakurai N; Komoda K; Nishimoto M; Kitaoka M; Mori H; Yao M FEBS Lett; 2016 Mar; 590(6):828-37. PubMed ID: 26913570 [TBL] [Abstract][Full Text] [Related]
39. Redesign of the Active Site of Sucrose Phosphorylase through a Clash-Induced Cascade of Loop Shifts. Kraus M; Grimm C; Seibel J Chembiochem; 2016 Jan; 17(1):33-6. PubMed ID: 26527586 [TBL] [Abstract][Full Text] [Related]
40. Engineering a Carbohydrate-processing Transglycosidase into Glycosyltransferase for Natural Product Glycodiversification. Liang C; Zhang Y; Jia Y; Wenzhao Wang ; Li Y; Lu S; Jin JM; Tang SY Sci Rep; 2016 Feb; 6():21051. PubMed ID: 26869143 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]