These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32260602)

  • 1. Nuclear quantum tunnelling and carrier delocalization effects to bridge the gap between hopping and bandlike behaviors in organic semiconductors.
    Jiang Y; Zhong X; Shi W; Peng Q; Geng H; Zhao Y; Shuai Z
    Nanoscale Horiz; 2016 Jan; 1(1):53-59. PubMed ID: 32260602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding Carrier Transport in Organic Semiconductors: Computation of Charge Mobility Considering Quantum Nuclear Tunneling and Delocalization Effects.
    Jiang Y; Geng H; Li W; Shuai Z
    J Chem Theory Comput; 2019 Mar; 15(3):1477-1491. PubMed ID: 30620581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of Mixed Quantum-Classical Approaches on Modeling the Crossover from Hopping to Bandlike Charge Transport in Organic Semiconductors.
    Xie W; Holub D; Kubař T; Elstner M
    J Chem Theory Comput; 2020 Apr; 16(4):2071-2084. PubMed ID: 32176844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From charge transport parameters to charge mobility in organic semiconductors through multiscale simulation.
    Shuai Z; Geng H; Xu W; Liao Y; André JM
    Chem Soc Rev; 2014 Apr; 43(8):2662-79. PubMed ID: 24394992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study on the charge transport in single crystals of TCNQ, F
    Ji LF; Fan JX; Zhang SF; Ren AM
    Phys Chem Chem Phys; 2018 Jan; 20(5):3784-3794. PubMed ID: 29349447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards direct enzyme wiring: a theoretical investigation of charge carrier transfer mechanisms between glucose oxidase and organic semiconductors.
    BagdŽiūnas G; Ramanavičius A
    Phys Chem Chem Phys; 2019 Feb; 21(6):2968-2976. PubMed ID: 30671578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation based on dynamic disorder model in organic semiconductors: from coherent to incoherent transport.
    Yao Y; Si W; Hou X; Wu CQ
    J Chem Phys; 2012 Jun; 136(23):234106. PubMed ID: 22779580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge-transport regime of crystalline organic semiconductors: diffusion limited by thermal off-diagonal electronic disorder.
    Troisi A; Orlandi G
    Phys Rev Lett; 2006 Mar; 96(8):086601. PubMed ID: 16606209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge transfer rates in organic semiconductors beyond first-order perturbation: from weak to strong coupling regimes.
    Nan G; Wang L; Yang X; Shuai Z; Zhao Y
    J Chem Phys; 2009 Jan; 130(2):024704. PubMed ID: 19154047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing Carrier Transport and Structure-Property Relationship of Highly Ordered Organic Semiconductors at the Two-Dimensional Limit.
    Zhang Y; Qiao J; Gao S; Hu F; He D; Wu B; Yang Z; Xu B; Li Y; Shi Y; Ji W; Wang P; Wang X; Xiao M; Xu H; Xu JB; Wang X
    Phys Rev Lett; 2016 Jan; 116(1):016602. PubMed ID: 26799035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applying Marcus theory to describe the carrier transports in organic semiconductors: Limitations and beyond.
    Shuai Z; Li W; Ren J; Jiang Y; Geng H
    J Chem Phys; 2020 Aug; 153(8):080902. PubMed ID: 32872875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling of the charge carrier mobility in disordered linear polymer materials.
    Toman P; Menšík M; Bartkowiak W; Pfleger J
    Phys Chem Chem Phys; 2017 Mar; 19(11):7760-7771. PubMed ID: 28262858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical Prediction of Isotope Effects on Charge Transport in Organic Semiconductors.
    Jiang Y; Geng H; Shi W; Peng Q; Zheng X; Shuai Z
    J Phys Chem Lett; 2014 Jul; 5(13):2267-73. PubMed ID: 26279545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Nanoscale Morphology on Charge Carrier Delocalization and Mobility in an Organic Semiconductor.
    Ellis M; Yang H; Giannini S; Ziogos OG; Blumberger J
    Adv Mater; 2021 Nov; 33(45):e2104852. PubMed ID: 34558126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carrier Induced Hopping to Band Conduction in Pentacene.
    Rani V; Kumar P; Sharma A; Yadav S; Singh B; Ray N; Ghosh S
    Sci Rep; 2019 Dec; 9(1):20193. PubMed ID: 31882781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bandlike motion and mobility saturation in organic molecular semiconductors.
    Fratini S; Ciuchi S
    Phys Rev Lett; 2009 Dec; 103(26):266601. PubMed ID: 20366327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A unified theory for charge-carrier transport in organic crystals.
    Cheng YC; Silbey RJ
    J Chem Phys; 2008 Mar; 128(11):114713. PubMed ID: 18361607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures.
    Saeki A; Koizumi Y; Aida T; Seki S
    Acc Chem Res; 2012 Aug; 45(8):1193-202. PubMed ID: 22676381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dichotomy between the band and hopping transport in organic crystals: insights from experiments.
    Yavuz I
    Phys Chem Chem Phys; 2017 Oct; 19(38):25819-25828. PubMed ID: 28932847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the theoretical description of charge transport in organic crystals.
    da Cunha WF; de Brito SS; de Sousa LE; Enders BG; de Oliveira Neto PH
    J Mol Model; 2019 Mar; 25(3):83. PubMed ID: 30826977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.