BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32260606)

  • 1. Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics.
    Zhang X; Li P; Barreda Á; Gutiérrez Y; González F; Moreno F; Everitt HO; Liu J
    Nanoscale Horiz; 2016 Jan; 1(1):75-80. PubMed ID: 32260606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodium nanoparticles for ultraviolet plasmonics.
    Watson AM; Zhang X; Alcaraz de la Osa R; Marcos Sanz J; González F; Moreno F; Finkelstein G; Liu J; Everitt HO
    Nano Lett; 2015 Feb; 15(2):1095-100. PubMed ID: 25602159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhodium nanocubes and nanotripods for highly sensitive ultraviolet surface-enhanced Raman spectroscopy.
    Das R; Soni RK
    Analyst; 2018 May; 143(10):2310-2322. PubMed ID: 29687108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars.
    Zhang Q; Large N; Wang H
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultraviolet Resonant Nanogap Antennas with Rhodium Nanocube Dimers for Enhancing Protein Intrinsic Autofluorescence.
    Roy P; Zhu S; Claude JB; Liu J; Wenger J
    ACS Nano; 2023 Nov; 17(22):22418-22429. PubMed ID: 37931219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The UV Plasmonic Behavior of Distorted Rhodium Nanocubes.
    Gutiérrez Y; Ortiz D; Saiz JM; González F; Everitt HO; Moreno F
    Nanomaterials (Basel); 2017 Dec; 7(12):. PubMed ID: 29207569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultraviolet Interband Plasmonics With Si Nanostructures.
    Dong Z; Wang T; Chi X; Ho J; Tserkezis C; Yap SLK; Rusydi A; Tjiptoharsono F; Thian D; Mortensen NA; Yang JKW
    Nano Lett; 2019 Nov; 19(11):8040-8048. PubMed ID: 31560545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topologically Enclosed Aluminum Voids as Plasmonic Nanostructures.
    Zhu Y; Nakashima PNH; Funston AM; Bourgeois L; Etheridge J
    ACS Nano; 2017 Nov; 11(11):11383-11392. PubMed ID: 29094925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically Tunable All-PCM Visible Plasmonics.
    Sreekanth KV; Medwal R; Das CM; Gupta M; Mishra M; Yong KT; Rawat RS; Singh R
    Nano Lett; 2021 May; 21(9):4044-4050. PubMed ID: 33900781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aluminum nanopyramid array with tunable ultraviolet-visible-infrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199.
    Li W; Qiu Y; Zhang L; Jiang L; Zhou Z; Chen H; Zhou J
    Biosens Bioelectron; 2016 May; 79():500-7. PubMed ID: 26748367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis Methods and Optical Sensing Applications of Plasmonic Metal Nanoparticles Made from Rhodium, Platinum, Gold, or Silver.
    Demishkevich E; Zyubin A; Seteikin A; Samusev I; Park I; Hwangbo CK; Choi EH; Lee GJ
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refractory plasmonics: orientation-dependent plasmonic coupling in TiN and ZrN nanocubes.
    El-Saeed AH; Allam NK
    Phys Chem Chem Phys; 2018 Jan; 20(3):1881-1888. PubMed ID: 29296979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal liquid-phase laser fabrication of various nano-metals encapsulated by ultrathin carbon shells for deep-UV plasmonics.
    Yu M; Yang C; Li XM; Lei TY; Sun HX; Dai LP; Gu Y; Ning X; Zhou T; Wang C; Zeng HB; Xiong J
    Nanoscale; 2017 Jun; 9(25):8716-8722. PubMed ID: 28616953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surpassing Single Line Width Active Tuning with Photochromic Molecules Coupled to Plasmonic Nanoantennas.
    Wilson WM; Stewart JW; Mikkelsen MH
    Nano Lett; 2018 Feb; 18(2):853-858. PubMed ID: 29284087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanically Tunable Lattice-Plasmon Resonances by Templated Self-Assembled Superlattices for Multi-Wavelength Surface-Enhanced Raman Spectroscopy.
    Charconnet M; Kuttner C; Plou J; García-Pomar JL; Mihi A; Liz-Marzán LM; Seifert A
    Small Methods; 2021 Oct; 5(10):e2100453. PubMed ID: 34927949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of radiative processes using tunable plasmonic nanopatch antennas.
    Rose A; Hoang TB; McGuire F; Mock JJ; Ciracì C; Smith DR; Mikkelsen MH
    Nano Lett; 2014 Aug; 14(8):4797-802. PubMed ID: 25020029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays.
    Jha SK; Ahmed Z; Agio M; Ekinci Y; Löffler JF
    J Am Chem Soc; 2012 Feb; 134(4):1966-9. PubMed ID: 22239484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aluminum Nanocubes Have Sharp Corners.
    Clark BD; Jacobson CR; Lou M; Renard D; Wu G; Bursi L; Ali AS; Swearer DF; Tsai AL; Nordlander P; Halas NJ
    ACS Nano; 2019 Aug; 13(8):9682-9691. PubMed ID: 31397561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pushing the high-energy limit of plasmonics.
    Bisio F; Proietti Zaccaria R; Moroni R; Maidecchi G; Alabastri A; Gonella G; Giglia A; Andolfi L; Nannarone S; Mattera L; Canepa M
    ACS Nano; 2014 Sep; 8(9):9239-47. PubMed ID: 25181497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.