These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32260633)

  • 1. MnO
    Zhai T; Lu X; Wang F; Xia H; Tong Y
    Nanoscale Horiz; 2016 Mar; 1(2):109-124. PubMed ID: 32260633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.
    Jin Y; Chen H; Chen M; Liu N; Li Q
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3408-16. PubMed ID: 23488813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping.
    Yu G; Hu L; Liu N; Wang H; Vosgueritchian M; Yang Y; Cui Y; Bao Z
    Nano Lett; 2011 Oct; 11(10):4438-42. PubMed ID: 21942427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Stretchable Supercapacitors Enabled by Low-Dimensional Nanomaterials.
    Cao C; Chu Y; Zhou Y; Zhang C; Qu S
    Small; 2018 Dec; 14(52):e1803976. PubMed ID: 30450784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional SiC/Holey-Graphene/Holey-MnO
    Chen Y; Zhang X; Xue W; Xie Z
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32514-32525. PubMed ID: 32578976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Mass Loading MnO
    Huang ZH; Song Y; Feng DY; Sun Z; Sun X; Liu XX
    ACS Nano; 2018 Apr; 12(4):3557-3567. PubMed ID: 29579384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silver-Quantum-Dot-Modified MoO
    Zhang X; Fu Q; Huang H; Wei L; Guo X
    Small; 2019 Mar; 15(13):e1805235. PubMed ID: 30821918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors.
    Peng L; Peng X; Liu B; Wu C; Xie Y; Yu G
    Nano Lett; 2013 May; 13(5):2151-7. PubMed ID: 23590256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two dimensional nanomaterials for flexible supercapacitors.
    Peng X; Peng L; Wu C; Xie Y
    Chem Soc Rev; 2014 May; 43(10):3303-23. PubMed ID: 24614864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors.
    Sundriyal P; Bhattacharya S
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38507-38521. PubMed ID: 28991438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Standing Metallic Mesh with MnO
    Liu YH; Jiang ZY; Xu JL
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24047-24056. PubMed ID: 31192577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers.
    Zhao Z; Xia K; Hou Y; Zhang Q; Ye Z; Lu J
    Chem Soc Rev; 2021 Nov; 50(22):12702-12743. PubMed ID: 34643198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Latest Advances in Flexible Symmetric Supercapacitors: From Material Engineering to Wearable Applications.
    Lu C; Chen X
    Acc Chem Res; 2020 Aug; 53(8):1468-1477. PubMed ID: 32658447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes.
    He Y; Chen W; Li X; Zhang Z; Fu J; Zhao C; Xie E
    ACS Nano; 2013 Jan; 7(1):174-82. PubMed ID: 23249211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO
    Wang J; Dong L; Xu C; Ren D; Ma X; Kang F
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10851-10859. PubMed ID: 29528208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances.
    Naderi L; Shahrokhian S
    J Colloid Interface Sci; 2019 Apr; 542():325-338. PubMed ID: 30763900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel.
    Gund GS; Dubal DP; Chodankar NR; Cho JY; Gomez-Romero P; Park C; Lokhande CD
    Sci Rep; 2015 Jul; 5():12454. PubMed ID: 26208144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion.
    Shi H; Wen G; Nie Y; Zhang G; Duan H
    Nanoscale; 2020 Mar; 12(9):5261-5285. PubMed ID: 32091524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Conductive Mo
    Shi M; Zhao L; Song X; Liu J; Zhang P; Gao L
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32460-32467. PubMed ID: 27808498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen Evolution Assisted Fabrication of Highly Loaded Carbon Nanotube/MnO2 Hybrid Films for High-Performance Flexible Pseudosupercapacitors.
    Chen H; Zeng S; Chen M; Zhang Y; Zheng L; Li Q
    Small; 2016 Apr; 12(15):2035-45. PubMed ID: 26929042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.