These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 32260645)

  • 1. Using hematite for photoelectrochemical water splitting: a review of current progress and challenges.
    Tamirat AG; Rick J; Dubale AA; Su WN; Hwang BJ
    Nanoscale Horiz; 2016 Jul; 1(4):243-267. PubMed ID: 32260645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures.
    Qiu Y; Leung SF; Zhang Q; Hua B; Lin Q; Wei Z; Tsui KH; Zhang Y; Yang S; Fan Z
    Nano Lett; 2014; 14(4):2123-9. PubMed ID: 24601797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrathin planar hematite film for solar photoelectrochemical water splitting.
    Liu D; Bierman DM; Lenert A; Yu HT; Yang Z; Wang EN; Duan YY
    Opt Express; 2015 Nov; 23(24):A1491-8. PubMed ID: 26698797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoanodes based on TiO
    Kment S; Riboni F; Pausova S; Wang L; Wang L; Han H; Hubicka Z; Krysa J; Schmuki P; Zboril R
    Chem Soc Rev; 2017 Jun; 46(12):3716-3769. PubMed ID: 28397882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface, Bulk, and Interface: Rational Design of Hematite Architecture toward Efficient Photo-Electrochemical Water Splitting.
    Li C; Luo Z; Wang T; Gong J
    Adv Mater; 2018 Jul; 30(30):e1707502. PubMed ID: 29750372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triboelectric Nanogenerator Driven Self-Powered Photoelectrochemical Water Splitting Based on Hematite Photoanodes.
    Wei A; Xie X; Wen Z; Zheng H; Lan H; Shao H; Sun X; Zhong J; Lee ST
    ACS Nano; 2018 Aug; 12(8):8625-8632. PubMed ID: 30036045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoanodes with Fully Controllable Texture: The Enhanced Water Splitting Efficiency of Thin Hematite Films Exhibiting Solely (110) Crystal Orientation.
    Kment S; Schmuki P; Hubicka Z; Machala L; Kirchgeorg R; Liu N; Wang L; Lee K; Olejnicek J; Cada M; Gregora I; Zboril R
    ACS Nano; 2015 Jul; 9(7):7113-23. PubMed ID: 26083741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grey hematite photoanodes decrease the onset potential in photoelectrochemical water oxidation.
    Liu PF; Wang C; Wang Y; Li Y; Zhang B; Zheng LR; Jiang Z; Zhao H; Yang HG
    Sci Bull (Beijing); 2021 May; 66(10):1013-1021. PubMed ID: 36654246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device.
    Wang P; Wang D; Lin J; Li X; Peng C; Gao X; Huang Q; Wang J; Xu H; Fan C
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2295-302. PubMed ID: 22452535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved charge separation efficiency of hematite photoanodes by coating an ultrathin p-type LaFeO
    Fang T; Guo Y; Cai S; Zhang N; Hu Y; Zhang S; Li Z; Zou Z
    Nanotechnology; 2017 Sep; 28(39):394003. PubMed ID: 28879862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hematite-NiO/α-Ni(OH)2 heterostructure photoanodes with high electrocatalytic current density and charge storage capacity.
    Bora DK; Braun A; Erni R; Müller U; Döbeli M; Constable EC
    Phys Chem Chem Phys; 2013 Aug; 15(30):12648-59. PubMed ID: 23788236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gap-plasmon enhanced water splitting with ultrathin hematite films: the role of plasmonic-based light trapping and hot electrons.
    Dutta A; Naldoni A; Malara F; Govorov AO; Shalaev VM; Boltasseva A
    Faraday Discuss; 2019 May; 214():283-295. PubMed ID: 30821797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.
    Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M
    ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Ga2O3 underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting.
    Hisatomi T; Brillet J; Cornuz M; Le Formal F; Tétreault N; Sivula K; Grätzel M
    Faraday Discuss; 2012; 155():223-32; discussion 297-308. PubMed ID: 22470976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Acidic Photoelectrochemical Water Splitting Enabled by Ru Single Atoms Anchored on Hematite Photoanodes.
    Li TT; Cui JY; Xu M; Song K; Yin ZH; Meng C; Liu H; Wang JJ
    Nano Lett; 2024 Jan; 24(3):958-965. PubMed ID: 38207219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doping-Promoted Solar Water Oxidation on Hematite Photoanodes.
    Zhang Y; Ji H; Ma W; Chen C; Song W; Zhao J
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27376262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting.
    Qiu Y; Pan Z; Chen H; Ye D; Guo L; Fan Z; Yang S
    Sci Bull (Beijing); 2019 Sep; 64(18):1348-1380. PubMed ID: 36659664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ growth of α-Fe
    Li C; Chen Z; Yuan W; Xu QH; Li CM
    Nanoscale; 2019 Jan; 11(3):1111-1122. PubMed ID: 30574647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.