These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 32260782)
1. Intrinsically radiolabeled multifunctional cerium oxide nanoparticles for in vivo studies. Yang L; Sundaresan G; Sun M; Jose P; Hoffman D; McDonagh PR; Lamichhane N; Cutler CS; Perez JM; Zweit J J Mater Chem B; 2013 Mar; 1(10):1421-1431. PubMed ID: 32260782 [TBL] [Abstract][Full Text] [Related]
2. Biodistribution and PET imaging of 89-zirconium labeled cerium oxide nanoparticles synthesized with several surface coatings. McDonagh PR; Sundaresan G; Yang L; Sun M; Mikkelsen R; Zweit J Nanomedicine; 2018 Jun; 14(4):1429-1440. PubMed ID: 29641981 [TBL] [Abstract][Full Text] [Related]
4. Cerium oxide nanoparticles: potential applications for cancer and other diseases. Wason MS; Zhao J Am J Transl Res; 2013; 5(2):126-31. PubMed ID: 23573358 [TBL] [Abstract][Full Text] [Related]
5. Intranasal inorganic cerium oxide nanoparticles ameliorate oxidative stress induced motor manifestations in haloperidol-induced parkinsonism. Mohammad ; Khan UA; Saifi Z; Bora J; Warsi MH; Abourehab MAS; Jain GK; Kesharwani P; Ali A Inflammopharmacology; 2023 Oct; 31(5):2571-2585. PubMed ID: 37432554 [TBL] [Abstract][Full Text] [Related]
6. Cerium Oxide Nanoparticles Sensitize Pancreatic Cancer to Radiation Therapy through Oxidative Activation of the JNK Apoptotic Pathway. Wason MS; Lu H; Yu L; Lahiri SK; Mukherjee D; Shen C; Das S; Seal S; Zhao J Cancers (Basel); 2018 Sep; 10(9):. PubMed ID: 30200491 [TBL] [Abstract][Full Text] [Related]
7. Radiolabeling polymeric micelles for in vivo evaluation: a novel, fast, and facile method. Laan AC; Santini C; Jennings L; de Jong M; Bernsen MR; Denkova AG EJNMMI Res; 2016 Dec; 6(1):12. PubMed ID: 26860294 [TBL] [Abstract][Full Text] [Related]
8. Radiolabeled Iron Oxide Nanoparticles as Dual Modality Contrast Agents in SPECT/MRI and PET/MRI. Karageorgou MA; Bouziotis P; Stiliaris E; Stamopoulos D Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770463 [TBL] [Abstract][Full Text] [Related]
9. In Situ In Vivo radiolabeling of polymer-coated hydroxyapatite nanoparticles to track their biodistribution in mice. Lobaz V; Konefał R; Pánek J; Vlk M; Kozempel J; Petřík M; Novy Z; Gurská S; Znojek P; Štěpánek P; Hrubý M Colloids Surf B Biointerfaces; 2019 Jul; 179():143-152. PubMed ID: 30954015 [TBL] [Abstract][Full Text] [Related]
10. Potential of using cerium oxide nanoparticles for protecting healthy tissue during accelerated partial breast irradiation (APBI). Ouyang Z; Mainali MK; Sinha N; Strack G; Altundal Y; Hao Y; Winningham TA; Sajo E; Celli J; Ngwa W Phys Med; 2016 Apr; 32(4):631-5. PubMed ID: 27053452 [TBL] [Abstract][Full Text] [Related]
11. On the use of superparamagnetic hydroxyapatite nanoparticles as an agent for magnetic and nuclear in vivo imaging. Adamiano A; Iafisco M; Sandri M; Basini M; Arosio P; Canu T; Sitia G; Esposito A; Iannotti V; Ausanio G; Fragogeorgi E; Rouchota M; Loudos G; Lascialfari A; Tampieri A Acta Biomater; 2018 Jun; 73():458-469. PubMed ID: 29689381 [TBL] [Abstract][Full Text] [Related]
12. Cerium oxide nanoparticles in cancer. Gao Y; Chen K; Ma JL; Gao F Onco Targets Ther; 2014; 7():835-40. PubMed ID: 24920925 [TBL] [Abstract][Full Text] [Related]
13. Estimation of radiation dose-reduction factor for cerium oxide nanoparticles in MRC-5 human lung fibroblastic cells and MCF-7 breast-cancer cells. Abdi Goushbolagh N; Abedi Firouzjah R; Ebrahimnejad Gorji K; Khosravanipour M; Moradi S; Banaei A; Astani A; Najafi M; Zare MH; Farhood B Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S1215-S1225. PubMed ID: 30481078 [TBL] [Abstract][Full Text] [Related]
14. Advanced Methods for Radiolabeling Multimodality Nanomedicines for SPECT/MRI and PET/MRI. Lamb J; Holland JP J Nucl Med; 2018 Mar; 59(3):382-389. PubMed ID: 29025988 [TBL] [Abstract][Full Text] [Related]
15. L-Ascorbic Acid Protected Against Extrinsic and Intrinsic Apoptosis Induced by Cobalt Nanoparticles Through ROS Attenuation. Liu Y; Hong H; Lu X; Wang W; Liu F; Yang H Biol Trace Elem Res; 2017 Feb; 175(2):428-439. PubMed ID: 27377067 [TBL] [Abstract][Full Text] [Related]
16. N-acetylcysteine Attenuates Cobalt Nanoparticle-Induced Cytotoxic Effects through Inhibition of Cell Death, Reactive Oxygen Species-related Signaling and Cytokines Expression. Liu YK; Yang HW; Wang MH; Wang W; Liu F; Yang HL Orthop Surg; 2016 Nov; 8(4):496-502. PubMed ID: 28032714 [TBL] [Abstract][Full Text] [Related]
17. Ognjanović M; Radović M; Mirković M; Prijović Ž; Puerto Morales MD; Čeh M; Vranješ-Đurić S; Antić B ACS Appl Mater Interfaces; 2019 Nov; 11(44):41109-41117. PubMed ID: 31610125 [TBL] [Abstract][Full Text] [Related]
18. Biodistribution of polyacrylic acid-coated iron oxide nanoparticles is associated with proinflammatory activation and liver toxicity. Couto D; Freitas M; Costa VM; Chisté RC; Almeida A; Lopez-Quintela MA; Rivas J; Freitas P; Silva P; Carvalho F; Fernandes E J Appl Toxicol; 2016 Oct; 36(10):1321-31. PubMed ID: 27102234 [TBL] [Abstract][Full Text] [Related]