These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 32260865)
1. Nano-cellulose 3D-networks as controlled-release drug carriers. Huang L; Chen X; Nguyen TX; Tang H; Zhang L; Yang G J Mater Chem B; 2013 Jun; 1(23):2976-2984. PubMed ID: 32260865 [TBL] [Abstract][Full Text] [Related]
2. Stimuli-responsive bacterial cellulose-g-poly(acrylic acid-co-acrylamide) hydrogels for oral controlled release drug delivery. Mohd Amin MC; Ahmad N; Pandey M; Jue Xin C Drug Dev Ind Pharm; 2014 Oct; 40(10):1340-9. PubMed ID: 23875787 [TBL] [Abstract][Full Text] [Related]
3. Surface engineered mesoporous silica carriers for the controlled delivery of anticancer drug 5-fluorouracil: Computational approach for the drug-carrier interactions using density functional theory. Rehman F; Khan AJ; Sama ZU; Alobaid HM; Gilani MA; Safi SZ; Muhammad N; Rahim A; Ali A; Guo J; Arshad M; Emran TB Front Pharmacol; 2023; 14():1146562. PubMed ID: 37124235 [No Abstract] [Full Text] [Related]
4. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Valo H; Arola S; Laaksonen P; Torkkeli M; Peltonen L; Linder MB; Serimaa R; Kuga S; Hirvonen J; Laaksonen T Eur J Pharm Sci; 2013 Sep; 50(1):69-77. PubMed ID: 23500041 [TBL] [Abstract][Full Text] [Related]
5. Comparison of drug release behavior of bacterial cellulose loaded with ibuprofen and propranolol hydrochloride. Jantarat C; Muenraya P; Srivaro S; Nawakitrangsan A; Promsornpason K RSC Adv; 2021 Nov; 11(59):37354-37365. PubMed ID: 35496416 [TBL] [Abstract][Full Text] [Related]
6. Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Silva NH; Rodrigues AF; Almeida IF; Costa PC; Rosado C; Neto CP; Silvestre AJ; Freire CS Carbohydr Polym; 2014 Jun; 106():264-9. PubMed ID: 24721077 [TBL] [Abstract][Full Text] [Related]
7. Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Shao W; Liu H; Wang S; Wu J; Huang M; Min H; Liu X Carbohydr Polym; 2016 Jul; 145():114-20. PubMed ID: 27106158 [TBL] [Abstract][Full Text] [Related]
8. Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Trovatti E; Freire CS; Pinto PC; Almeida IF; Costa P; Silvestre AJ; Neto CP; Rosado C Int J Pharm; 2012 Oct; 435(1):83-7. PubMed ID: 22266531 [TBL] [Abstract][Full Text] [Related]
9. Carboxymethyl cellulose-rosin gum hybrid nanoparticles: An efficient drug carrier. Singh V; Joshi S; Malviya T Int J Biol Macromol; 2018 Jun; 112():390-398. PubMed ID: 29391225 [TBL] [Abstract][Full Text] [Related]
10. Development of Crystalline Cellulosic Fibres for Sustained Release of Drug. Mishra D; Yadav V; Khare P; Jyotshna ; Das MR; Meena A; Shanker K Curr Top Med Chem; 2016; 16(18):2026-35. PubMed ID: 26876520 [TBL] [Abstract][Full Text] [Related]
11. Eudraginated polymer blends: a potential oral controlled drug delivery system for theophylline. Emeje M; John-Africa L; Isimi Y; Kunle O; Ofoefule S Acta Pharm; 2012 Mar; 62(1):71-82. PubMed ID: 22472450 [TBL] [Abstract][Full Text] [Related]
12. Microencapsulation of chlorpheniramine maleate-resin particles with crosslinked chitosan for sustained release. Huang RG; Schwartz JB; Ofner CM Pharm Dev Technol; 1999 Jan; 4(1):107-15. PubMed ID: 10027219 [TBL] [Abstract][Full Text] [Related]
13. Melatonin loaded with bacterial cellulose nanofiber by Pickering-emulsion solvent evaporation for enhanced dissolution and bioavailability. Li Y; Zhao X; Liu Y; Yang J; Zhang Q; Wang L; Wu W; Yang Q; Liu B Int J Pharm; 2019 Mar; 559():393-401. PubMed ID: 30731257 [TBL] [Abstract][Full Text] [Related]
14. Hydrocolloid carriers with filler inclusion for diltiazem hydrochloride release. Gal A; Nussinovitch A J Pharm Sci; 2007 Jan; 96(1):168-78. PubMed ID: 17031844 [TBL] [Abstract][Full Text] [Related]
15. Tailored beads made of dissolved cellulose--investigation of their drug release properties. Yildir E; Kolakovic R; Genina N; Trygg J; Gericke M; Hanski L; Ehlers H; Rantanen J; Tenho M; Vuorela P; Fardim P; Sandler N Int J Pharm; 2013 Nov; 456(2):417-23. PubMed ID: 24012866 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of freeze-dried chitosan-poly(ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Patel VR; Amiji MM Pharm Res; 1996 Apr; 13(4):588-93. PubMed ID: 8710751 [TBL] [Abstract][Full Text] [Related]
17. Influence of chemical and physical conditions in selection of Gluconacetobacter hansenii ATCC 23769 strains with high capacity to produce bacterial cellulose for application as sustained antimicrobial drug-release supports. Lazarini SC; Yamada C; Barud HS; Trovatti E; Corbi PP; Lustri WR J Appl Microbiol; 2018 Sep; 125(3):777-791. PubMed ID: 29762885 [TBL] [Abstract][Full Text] [Related]
18. Surface modification and evaluation of bacterial cellulose for drug delivery. Badshah M; Ullah H; Khan AR; Khan S; Park JK; Khan T Int J Biol Macromol; 2018 Jul; 113():526-533. PubMed ID: 29477541 [TBL] [Abstract][Full Text] [Related]
19. Drug release kinetics from carboxymethylcellulose-bacterial cellulose composite films. Juncu G; Stoica-Guzun A; Stroescu M; Isopencu G; Jinga SI Int J Pharm; 2016 Aug; 510(2):485-92. PubMed ID: 26688041 [TBL] [Abstract][Full Text] [Related]
20. Preparation and characterisation of a novel hydrogel based on Auricularia polytricha β-glucan and its bio-release property for vitamin B Zhu K; Chen X; Yu D; He Y; Song G J Sci Food Agric; 2018 May; 98(7):2617-2623. PubMed ID: 29064580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]