These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 32260947)
1. Synthesis and cellular compatibility of multi-block biodegradable poly(ε-caprolactone)-based polyurethanes. Khan F; Valere S; Fuhrmann S; Arrighi V; Bradley M J Mater Chem B; 2013 May; 1(20):2590-2600. PubMed ID: 32260947 [TBL] [Abstract][Full Text] [Related]
2. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders. Gorna K; Gogolewski S J Biomed Mater Res; 2002 Jun; 60(4):592-606. PubMed ID: 11948518 [TBL] [Abstract][Full Text] [Related]
3. Bioresorbable poly(ester-ether urethane)s from L-lysine diisocyanate and triblock copolymers with different hydrophilic character. Abraham GA; Marcos-Fernández A; Román JS J Biomed Mater Res A; 2006 Mar; 76(4):729-36. PubMed ID: 16317720 [TBL] [Abstract][Full Text] [Related]
4. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels. Li Z; Zhang Z; Liu KL; Ni X; Li J Biomacromolecules; 2012 Dec; 13(12):3977-89. PubMed ID: 23167676 [TBL] [Abstract][Full Text] [Related]
5. Fine tuning micellar core-forming block of poly(ethylene glycol)-block-poly(ε-caprolactone) amphiphilic copolymers based on chemical modification for the solubilization and delivery of doxorubicin. Yan J; Ye Z; Chen M; Liu Z; Xiao Y; Zhang Y; Zhou Y; Tan W; Lang M Biomacromolecules; 2011 Jul; 12(7):2562-72. PubMed ID: 21598958 [TBL] [Abstract][Full Text] [Related]
6. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone). Pergal MV; Antic VV; Tovilovic G; Nestorov J; Vasiljevic-Radovic D; Djonlagic J J Biomater Sci Polym Ed; 2012; 23(13):1629-57. PubMed ID: 21888759 [TBL] [Abstract][Full Text] [Related]
7. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Tatai L; Moore TG; Adhikari R; Malherbe F; Jayasekara R; Griffiths I; Gunatillake PA Biomaterials; 2007 Dec; 28(36):5407-17. PubMed ID: 17915310 [TBL] [Abstract][Full Text] [Related]
8. Degradation and cell culture studies on block copolymers prepared by ring opening polymerization of epsilon-caprolactone in the presence of poly(ethylene glycol). Huang MH; Li S; Hutmacher DW; Schantz JT; Vacanti CA; Braud C; Vert M J Biomed Mater Res A; 2004 Jun; 69(3):417-27. PubMed ID: 15127388 [TBL] [Abstract][Full Text] [Related]
9. Artificial extracellular matrix for biomedical applications: biocompatible and biodegradable poly (tetramethylene ether) glycol/poly (ε-caprolactone diol)-based polyurethanes. Shahrousvand M; Mir Mohamad Sadeghi G; Salimi A J Biomater Sci Polym Ed; 2016 Dec; 27(17):1712-1728. PubMed ID: 27589493 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Guelcher SA; Gallagher KM; Didier JE; Klinedinst DB; Doctor JS; Goldstein AS; Wilkes GL; Beckman EJ; Hollinger JO Acta Biomater; 2005 Jul; 1(4):471-84. PubMed ID: 16701828 [TBL] [Abstract][Full Text] [Related]
11. A novel approach to biodegradable block copolymers of epsilon-caprolactone and delta-valerolactone catalyzed by new aluminum metal complexes. Yang J; Jia L; Yin L; Yu J; Shi Z; Fang Q; Cao A Macromol Biosci; 2004 Dec; 4(12):1092-104. PubMed ID: 15586386 [TBL] [Abstract][Full Text] [Related]
12. Characterization, biodegradability and blood compatibility of poly[(R)-3-hydroxybutyrate] based poly(ester-urethane)s. Liu Q; Cheng S; Li Z; Xu K; Chen GQ J Biomed Mater Res A; 2009 Sep; 90(4):1162-76. PubMed ID: 18671259 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and characterization of biodegradable acrylated polyurethane based on poly(ε-caprolactone) and 1,6-hexamethylene diisocyanate. Alishiri M; Shojaei A; Abdekhodaie MJ; Yeganeh H Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():763-73. PubMed ID: 25063178 [TBL] [Abstract][Full Text] [Related]
14. Enzymatic degradation of block copolymers prepared from epsilon-caprolactone and poly(ethylene glycol). Li S; Garreau H; Pauvert B; McGrath J; Toniolo A; Vert M Biomacromolecules; 2002; 3(3):525-30. PubMed ID: 12005524 [TBL] [Abstract][Full Text] [Related]
15. Biodegradable and Biocompatible Thermoplastic Poly(Ester-Urethane)s Based on Poly(ε-Caprolactone) and Novel 1,3-Propanediol Bis(4-Isocyanatobenzoate) Diisocyanate: Synthesis and Characterization. Rubio Hernández-Sampelayo A; Navarro R; González-García DM; García-Fernández L; Ramírez-Jiménez RA; Aguilar MR; Marcos-Fernández Á Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406162 [TBL] [Abstract][Full Text] [Related]
16. New Segmented Poly(Thiourethane-Urethane)s Based on Poly(ε-Caprolactone)Diol Soft Segment: Synthesis and Characterization. Puszka A; Sikora JW Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888406 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of macrodiols and non-segmented poly(ester-urethanes) (PEUs) derived from α,ω-hydroxy telechelic poly(ε-caprolactone) (HOPCLOH): effect of initiator, degree of polymerization, and diisocyanate. Barrera-Nava MP; Navarro R; Marcos-Fernández Á; Báez JE RSC Adv; 2024 Aug; 14(37):27241-27251. PubMed ID: 39193304 [TBL] [Abstract][Full Text] [Related]
18. Study of the synthesis, crystallization, and morphology of poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymers. He C; Sun J; Deng C; Zhao T; Deng M; Chen X; Jing X Biomacromolecules; 2004; 5(5):2042-7. PubMed ID: 15360322 [TBL] [Abstract][Full Text] [Related]
19. Biocompatible and acid-cleavable poly(ε-caprolactone)-acetal-poly(ethylene glycol)-acetal-poly(ε-caprolactone) triblock copolymers: synthesis, characterization and pH-triggered doxorubicin delivery. Wang H; He J; Zhang M; Tao Y; Li F; Tam KC; Ni P J Mater Chem B; 2013 Dec; 1(48):6596-6607. PubMed ID: 32261268 [TBL] [Abstract][Full Text] [Related]
20. Multiblock Thermoplastic Polyurethanes: In Situ Studies of Structural and Morphological Evolution under Strain. Anokhin DV; Gorbunova MA; Abukaev AF; Ivanov DA Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34206146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]