These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 32260973)
1. Cryogels for biomedical applications. Henderson TMA; Ladewig K; Haylock DN; McLean KM; O'Connor AJ J Mater Chem B; 2013 Jun; 1(21):2682-2695. PubMed ID: 32260973 [TBL] [Abstract][Full Text] [Related]
2. Formation and characterisation of a modifiable soft macro-porous hyaluronic acid cryogel platform. Henderson TM; Ladewig K; Haylock DN; McLean KM; O'Connor AJ J Biomater Sci Polym Ed; 2015; 26(13):881-97. PubMed ID: 26123677 [TBL] [Abstract][Full Text] [Related]
3. A novel cell encapsulatable cryogel (CECG) with macro-porous structures and high permeability: a three-dimensional cell culture scaffold for enhanced cell adhesion and proliferation. Fan C; Ling Y; Deng W; Xue J; Sun P; Wang DA Biomed Mater; 2019 Jul; 14(5):055006. PubMed ID: 31269472 [TBL] [Abstract][Full Text] [Related]
4. Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering. Hwang Y; Sangaj N; Varghese S Tissue Eng Part A; 2010 Oct; 16(10):3033-41. PubMed ID: 20486791 [TBL] [Abstract][Full Text] [Related]
5. Efficacy of supermacroporous poly(ethylene glycol)-gelatin cryogel matrix for soft tissue engineering applications. Sharma A; Bhat S; Nayak V; Kumar A Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():298-312. PubMed ID: 25492201 [TBL] [Abstract][Full Text] [Related]
6. Porous protein-based scaffolds prepared through freezing as potential scaffolds for tissue engineering. Elowsson L; Kirsebom H; Carmignac V; Durbeej M; Mattiasson B J Mater Sci Mater Med; 2012 Oct; 23(10):2489-98. PubMed ID: 22772482 [TBL] [Abstract][Full Text] [Related]
8. Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering. Tripathi A; Kathuria N; Kumar A J Biomed Mater Res A; 2009 Sep; 90(3):680-94. PubMed ID: 18563830 [TBL] [Abstract][Full Text] [Related]
9. Inorganic/organic biocomposite cryogels for regeneration of bony tissues. Mishra R; Kumar A J Biomater Sci Polym Ed; 2011; 22(16):2107-26. PubMed ID: 21067655 [TBL] [Abstract][Full Text] [Related]
10. A comprehensive review of cryogels and their roles in tissue engineering applications. Hixon KR; Lu T; Sell SA Acta Biomater; 2017 Oct; 62():29-41. PubMed ID: 28851666 [TBL] [Abstract][Full Text] [Related]
11. Cellulose Cryogels as Promising Materials for Biomedical Applications. Tyshkunova IV; Poshina DN; Skorik YA Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216150 [TBL] [Abstract][Full Text] [Related]
16. Design and Assessment of Biodegradable Macroporous Cryogels as Advanced Tissue Engineering and Drug Carrying Materials. Savina IN; Zoughaib M; Yergeshov AA Gels; 2021 Jun; 7(3):. PubMed ID: 34203439 [TBL] [Abstract][Full Text] [Related]
17. Bio-inspired fabrication of fibroin cryogels from the muga silkworm Antheraea assamensis for liver tissue engineering. Kundu B; Kundu SC Biomed Mater; 2013 Oct; 8(5):055003. PubMed ID: 24002731 [TBL] [Abstract][Full Text] [Related]
18. The potential of polymeric cryogels in bioseparation. Lozinsky VI; Plieva FM; Galaev IY; Mattiasson B Bioseparation; 2001; 10(4-5):163-88. PubMed ID: 12233740 [TBL] [Abstract][Full Text] [Related]
19. Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells. Singh D; Zo SM; Kumar A; Han SS J Biomater Sci Polym Ed; 2013; 24(11):1343-59. PubMed ID: 23796035 [TBL] [Abstract][Full Text] [Related]
20. Preparation and characterization of collagen-nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications. Rodrigues SC; Salgado CL; Sahu A; Garcia MP; Fernandes MH; Monteiro FJ J Biomed Mater Res A; 2013 Apr; 101(4):1080-94. PubMed ID: 23008173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]