These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 32261010)

  • 1. Modulating the cytocompatibility of tridimensional carbon nanotube-based scaffolds.
    Nardecchia S; Serrano MC; Gutiérrez MC; Ferrer ML; Monte FD
    J Mater Chem B; 2013 Jun; 1(24):3064-3072. PubMed ID: 32261010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun Carbon Nanotube-Based Scaffolds Exhibit High Conductivity and Cytocompatibility for Tissue Engineering Applications.
    Suh TC; Twiddy J; Mahmood N; Ali KM; Lubna MM; Bradford PD; Daniele MA; Gluck JM
    ACS Omega; 2022 Jun; 7(23):20006-20019. PubMed ID: 35721944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiwalled Carbon Nanotube-Chitosan Scaffold: Cytotoxic, Apoptoti c, and Necrotic Effects on Chondrocyte Cell Lines.
    Ilbasmis-Tamer S; Ciftci H; Turk M; Degim T; Tamer U
    Curr Pharm Biotechnol; 2017; 18(4):327-335. PubMed ID: 28137220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printed Polycaprolactone Carbon Nanotube Composite Scaffolds for Cardiac Tissue Engineering.
    Ho CM; Mishra A; Lin PT; Ng SH; Yeong WY; Kim YJ; Yoon YJ
    Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27892655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds.
    Park S; Park J; Jo I; Cho SP; Sung D; Ryu S; Park M; Min KA; Kim J; Hong S; Hong BH; Kim BS
    Biomaterials; 2015 Jul; 58():93-102. PubMed ID: 25941786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating cell adhesion dynamics on carbon nanotube monolayer engineered with extracellular matrix proteins.
    Cai N; Wong CC; Gong YX; Tan SC; Chan V; Liao K
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):1038-47. PubMed ID: 20423124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes.
    Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH
    Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration.
    Lee SJ; Zhu W; Nowicki M; Lee G; Heo DN; Kim J; Zuo YY; Zhang LG
    J Neural Eng; 2018 Feb; 15(1):016018. PubMed ID: 29064377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of doping in carbon nanotubes on the viability of biomimetic chitosan-carbon nanotubes-hydroxyapatite scaffolds.
    Fonseca-García A; Mota-Morales JD; Quintero-Ortega IA; García-Carvajal ZY; Martínez-López V; Ruvalcaba E; Landa-Solís C; Solis L; Ibarra C; Gutiérrez MC; Terrones M; Sanchez IC; del Monte F; Velasquillo MC; Luna-Bárcenas G
    J Biomed Mater Res A; 2014 Oct; 102(10):3341-51. PubMed ID: 23894015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds.
    Zhou Z; Liu X; Wu W; Park S; Miller Ii AL; Terzic A; Lu L
    Biomater Sci; 2018 Aug; 6(9):2375-2385. PubMed ID: 30019709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotube nanocomposite scaffolds: advances in fabrication and applications for tissue regeneration and cancer therapy.
    Shar A; Shar A; Joung D
    Front Bioeng Biotechnol; 2023; 11():1299166. PubMed ID: 38179128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotubes as a scaffold for spermatogonial cell maintenance.
    Rafeeqi T; Kaul G
    J Biomed Nanotechnol; 2010 Dec; 6(6):710-7. PubMed ID: 21361137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chondroitin sulphate-based 3D scaffolds containing MWCNTs for nervous tissue repair.
    Serrano MC; Nardecchia S; García-Rama C; Ferrer ML; Collazos-Castro JE; del Monte F; Gutiérrez MC
    Biomaterials; 2014 Feb; 35(5):1543-51. PubMed ID: 24290440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of macroporous chitosan scaffolds doped with carbon nanotubes and their characterization in microbial fuel cell operation.
    Higgins SR; Foerster D; Cheung A; Lau C; Bretschger O; Minteer SD; Nealson K; Atanassov P; Cooney MJ
    Enzyme Microb Technol; 2011 May; 48(6-7):458-65. PubMed ID: 22113017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emulsion Template Method for the Fabrication of Gelatin-Based Scaffold with a Controllable Pore Structure.
    Yuan L; Li X; Ge L; Jia X; Lei J; Mu C; Li D
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):269-277. PubMed ID: 30525427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotube-composite hydrogels promote intercalated disc assembly in engineered cardiac tissues through β1-integrin mediated FAK and RhoA pathway.
    Sun H; Tang J; Mou Y; Zhou J; Qu L; Duval K; Huang Z; Lin N; Dai R; Liang C; Chen Z; Tang L; Tian F
    Acta Biomater; 2017 Jan; 48():88-99. PubMed ID: 27769942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube (CNT) and nanofibrillated cellulose (NFC) reinforcement effect on thermoplastic polyurethane (TPU) scaffolds fabricated via phase separation using dimethyl sulfoxide (DMSO) as solvent.
    Mi HY; Jing X; Salick MR; Cordie TM; Turng LS
    J Mech Behav Biomed Mater; 2016 Sep; 62():417-427. PubMed ID: 27266475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering.
    Van den Broeck L; Piluso S; Soultan AH; De Volder M; Patterson J
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1133-1144. PubMed ID: 30812997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.