These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32261225)

  • 41. Highly sensitive detection of exosomes by SERS using gold nanostar@Raman reporter@nanoshell structures modified with a bivalent cholesterol-labeled DNA anchor.
    Tian YF; Ning CF; He F; Yin BC; Ye BC
    Analyst; 2018 Oct; 143(20):4915-4922. PubMed ID: 30225507
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanosupernova: a new anisotropic nanostructure for SERS.
    Rhee K; Tukova A; Tavakkoli Yaraki M; Wang Y
    Nanoscale; 2023 Feb; 15(5):2087-2095. PubMed ID: 36647920
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Raman Reporter-Coupled Ag(core)@Au(shell) Nanostars for in Vivo Improved Surface Enhanced Raman Scattering Imaging and Near-infrared-Triggered Photothermal Therapy in Breast Cancers.
    Zeng L; Pan Y; Wang S; Wang X; Zhao X; Ren W; Lu G; Wu A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16781-91. PubMed ID: 26204589
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars.
    Zhang Q; Large N; Wang H
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanostructured Raman substrates for the sensitive detection of submicrometer-sized plastic pollutants in water.
    Lê QT; Ly NH; Kim MK; Lim SH; Son SJ; Zoh KD; Joo SW
    J Hazard Mater; 2021 Jan; 402():123499. PubMed ID: 32739725
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multiplexing determination of cancer-associated biomarkers by surface-enhanced Raman scattering using ordered gold nanohoneycomb arrays.
    Li L; Liu C; Cao X; Tan L; Lu W
    Bioanalysis; 2017 Oct; 9(20):1561-1572. PubMed ID: 29072486
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A SERS-based immunoassay with highly increased sensitivity using gold/silver core-shell nanorods.
    Wu L; Wang Z; Zong S; Huang Z; Zhang P; Cui Y
    Biosens Bioelectron; 2012; 38(1):94-9. PubMed ID: 22647534
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Live Cell Poration by Au Nanostars to Probe Intracellular Molecular Composition with SERS.
    Nikelshparg EI; Prikhozhdenko ES; Verkhovskii RA; Atkin VS; Khanadeev VA; Khlebtsov BN; Bratashov DN
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34685030
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tuning gold nanostar morphology for the SERS detection of uranyl.
    Harder RA; Wijenayaka LA; Phan HT; Haes AJ
    J Raman Spectrosc; 2021 Feb; 52(2):497-505. PubMed ID: 34177076
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Controlled Growth of Gold Nanostars: Effect of Spike Length on SERS Signal Enhancement.
    Sheen Mers SV; Umadevi S; Ganesh V
    Chemphyschem; 2017 May; 18(10):1358-1369. PubMed ID: 28266094
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy.
    Lee J; Hua B; Park S; Ha M; Lee Y; Fan Z; Ko H
    Nanoscale; 2014 Jan; 6(1):616-23. PubMed ID: 24247586
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel method for in situ synthesis of SERS-active gold nanostars on polydimethylsiloxane film.
    Fortuni B; Fujita Y; Ricci M; Inose T; Aubert R; Lu G; Hutchison JA; Hofkens J; Latterini L; Uji-I H
    Chem Commun (Camb); 2017 May; 53(37):5121-5124. PubMed ID: 28435951
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis and SERS activity of super-multibranched AuAg nanostructure via silver coating-induced aggregation of nanostars.
    Li JJ; Wu C; Zhao J; Weng GJ; Zhu J; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():380-387. PubMed ID: 29960240
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly sensitive detection of thrombin using SERS-based magnetic aptasensors.
    Yoon J; Choi N; Ko J; Kim K; Lee S; Choo J
    Biosens Bioelectron; 2013 Sep; 47():62-7. PubMed ID: 23557978
    [TBL] [Abstract][Full Text] [Related]  

  • 55. SERS immunoassay based on the capture and concentration of antigen-assembled gold nanoparticles.
    Lopez A; Lovato F; Oh SH; Lai YH; Filbrun S; Driskell EA; Driskell JD
    Talanta; 2016; 146():388-93. PubMed ID: 26695280
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assembly of Gold Nanostar Cores Within Silica Shells and Its Impact on Solid-State SERS and Nonenzymatic Catalytic Sensing.
    Dey S; Ghosh SK; Satpati B
    Langmuir; 2024 Jul; ():. PubMed ID: 39024338
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Probing the SERS brightness of individual Au nanoparticles, hollow Au/Ag nanoshells, Au nanostars and Au core/Au satellite particles: single-particle experiments and computer simulations.
    Tran V; Thiel C; Svejda JT; Jalali M; Walkenfort B; Erni D; Schlücker S
    Nanoscale; 2018 Nov; 10(46):21721-21731. PubMed ID: 30431039
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultrasensitive and selective homogeneous sandwich immunoassay detection by Surface Enhanced Raman Scattering (SERS).
    Pekdemir ME; Ertürkan D; Külah H; Boyacı IH; Ozgen C; Tamer U
    Analyst; 2012 Oct; 137(20):4834-40. PubMed ID: 22943047
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Magnetite-Supported Gold Nanostars for the Uptake and SERS Detection of Tetracycline.
    Pinheiro PC; Fateixa S; Nogueira HIS; Trindade T
    Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30591645
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Label-free plasmonic nanostar probes to illuminate
    Sloan-Dennison S; Schultz ZD
    Chem Sci; 2019 Feb; 10(6):1807-1815. PubMed ID: 30842849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.