These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 32261239)

  • 21. Effect of doping on the morphology and multiferroic properties of BiFeO3 nanorods.
    Dutta DP; Jayakumar OD; Tyagi AK; Girija KG; Pillai CG; Sharma G
    Nanoscale; 2010 Jul; 2(7):1149-54. PubMed ID: 20648341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Size-controlled synthesis of rod-like α-FeOOH nanostructure.
    Wei C; Qiao P; Nan Z
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1524-30. PubMed ID: 24364955
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ growth of β-FeOOH nanorods on graphene oxide with ultra-high relaxivity for in vivo magnetic resonance imaging and cancer therapy.
    Chen ML; Shen LM; Chen S; Wang H; Chen XW; Wang JH
    J Mater Chem B; 2013 May; 1(20):2582-2589. PubMed ID: 32260946
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disodium guanosine 5'-monophosphate self-associates into nanoscale cylinders at pH 8: a combined diffusion NMR spectroscopy and dynamic light scattering study.
    Wong A; Ida R; Spindler L; Wu G
    J Am Chem Soc; 2005 May; 127(19):6990-8. PubMed ID: 15884942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and phase transition of FeOOH nanorods: strain effects on catalytic water oxidation.
    Park G; Kim YI; Kim YH; Park M; Jang KY; Song H; Nam KM
    Nanoscale; 2017 Apr; 9(14):4751-4758. PubMed ID: 28327704
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel approach for the synthesis of superparamagnetic Mn3O4 nanocrystals by ultrasonic bath.
    Rohani Bastami T; Entezari MH
    Ultrason Sonochem; 2012 May; 19(3):560-9. PubMed ID: 22088978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. pH-induced simultaneous synthesis and self-assembly of 3D layered beta-FeOOH nanorods.
    Fang XL; Li Y; Chen C; Kuang Q; Gao XZ; Xie ZX; Xie SY; Huang RB; Zheng LS
    Langmuir; 2010 Feb; 26(4):2745-50. PubMed ID: 19957938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facile synthesis of self-assembled ultrathin α-FeOOH nanorod/graphene oxide composites for supercapacitors.
    Wei Y; Ding R; Zhang C; Lv B; Wang Y; Chen C; Wang X; Xu J; Yang Y; Li Y
    J Colloid Interface Sci; 2017 Oct; 504():593-602. PubMed ID: 28609743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying Phase-Dependent Electrochemical Stripping Performance of FeOOH Nanorod: Evidence from Kinetic Simulation and Analyte-Material Interactions.
    Yang M; Li YX; Jiang M; Li PH; Chen SH; Liu JH; Lin CH; Huang XJ; Liu WQ
    Small; 2020 Feb; 16(7):e1906830. PubMed ID: 31971669
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical Transformation of Colloidal Nanostructures with Morphological Preservation by Surface-Protection with Capping Ligands.
    Xu W; Wang M; Li Z; Wang X; Wang Y; Xing M; Yin Y
    Nano Lett; 2017 Apr; 17(4):2713-2718. PubMed ID: 28346828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bio-inspired fabrication of hierarchical FeOOH nanostructure array films at the air-water interface, their hydrophobicity and application for water treatment.
    Liu L; Yang LQ; Liang HW; Cong HP; Jiang J; Yu SH
    ACS Nano; 2013 Feb; 7(2):1368-78. PubMed ID: 23281829
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of akageneite (beta-FeOOH)/reduced graphene oxide nanocomposites for oxidative decomposition of 2-chlorophenol by Fenton-like reaction.
    Xiao F; Li W; Fang L; Wang D
    J Hazard Mater; 2016 May; 308():11-20. PubMed ID: 26808238
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Size Tuned Synthesis of FeOOH Nanorods toward Self-Assembled Nanoarchitectonics.
    Karami-Darehnaranji M; Taghizadeh SM; Mirzaei E; Berenjian A; Ebrahiminezhad A
    Langmuir; 2021 Jan; 37(1):115-123. PubMed ID: 33346669
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization and field emission performance of electrochemically synthesized FeOOH nanowalls.
    Chin KC; Cui H; Sow CH; Sheu FS; Van Li H; Gao X; Wee AT
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3301-6. PubMed ID: 18019164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Easy synthesis of high-purity BiFeO3 nanoparticles: new insights derived from the structural, optical, and magnetic characterization.
    Ortiz-Quiñonez JL; Díaz D; Zumeta-Dubé I; Arriola-Santamaría H; Betancourt I; Santiago-Jacinto P; Nava-Etzana N
    Inorg Chem; 2013 Sep; 52(18):10306-17. PubMed ID: 23967797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anion and Solvent Derived Morphology Controlling and Properties of
    Wang T; Zhao Y; Song T; Li JP; Yang P
    J Nanosci Nanotechnol; 2019 Dec; 19(12):8036-8044. PubMed ID: 31196324
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron oxide nanotubes synthesized via template-based electrodeposition.
    Lim JH; Min SG; Malkinski L; Wiley JB
    Nanoscale; 2014 May; 6(10):5289-95. PubMed ID: 24695621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon nanostraws: nanotubes filled with superparamagnetic nanoparticles.
    Pal S; Chandra S; Phan MH; Mukherjee P; Srikanth H
    Nanotechnology; 2009 Dec; 20(48):485604. PubMed ID: 19880982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biocompatible and biodegradable polymer nanofibers displaying superparamagnetic properties.
    Tan ST; Wendorff JH; Pietzonka C; Jia ZH; Wang GQ
    Chemphyschem; 2005 Aug; 6(8):1461-5. PubMed ID: 16007710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Characterization and spectral analysis of the stable mineral phases alpha, beta-FeOOH included in iron oxyhydroxides].
    Xu YQ; Yang M; He CD; Xiong HX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Dec; 33(12):3330-3. PubMed ID: 24611397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.