These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 32261425)

  • 21. Using experimental and computational energy equilibration to understand hierarchical self-assembly of Fmoc-dipeptide amphiphiles.
    Sasselli IR; Pappas CG; Matthews E; Wang T; Hunt NT; Ulijn RV; Tuttle T
    Soft Matter; 2016 Oct; 12(40):8307-8315. PubMed ID: 27722469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolving nanomaterials using enzyme-driven dynamic peptide libraries (eDPL).
    Das AK; Hirsth AR; Ulijn RV
    Faraday Discuss; 2009; 143():293-303; discussion 359-72. PubMed ID: 20334108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrostatic and aromatic interaction-directed supramolecular self-assembly of a designed Fmoc-tripeptide into helical nanoribbons.
    Xie Y; Wang X; Huang R; Qi W; Wang Y; Su R; He Z
    Langmuir; 2015 Mar; 31(9):2885-94. PubMed ID: 25694059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation and characterization of a novel sodium alginate incorporated self-assembled Fmoc-FF composite hydrogel.
    Gong X; Branford-White C; Tao L; Li S; Quan J; Nie H; Zhu L
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():478-86. PubMed ID: 26478335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Introducing chemical functionality in Fmoc-peptide gels for cell culture.
    Jayawarna V; Richardson SM; Hirst AR; Hodson NW; Saiani A; Gough JE; Ulijn RV
    Acta Biomater; 2009 Mar; 5(3):934-43. PubMed ID: 19249724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dipeptide Nanostructure Assembly and Dynamics
    Gnanasekaran K; Korpanty J; Berger O; Hampu N; Halperin-Sternfeld M; Cohen-Gerassi D; Adler-Abramovich L; Gianneschi NC
    ACS Nano; 2021 Oct; 15(10):16542-16551. PubMed ID: 34623126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-assembled Fmoc-peptides as a platform for the formation of nanostructures and hydrogels.
    Orbach R; Adler-Abramovich L; Zigerson S; Mironi-Harpaz I; Seliktar D; Gazit E
    Biomacromolecules; 2009 Sep; 10(9):2646-51. PubMed ID: 19705843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hierarchical organization of ferrocene-peptides.
    Beheshti S; Martić S; Kraatz HB
    Chemistry; 2012 Jul; 18(29):9099-105. PubMed ID: 22707407
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 1,1,1,3,3,3-Hexafluoro-2-propanol and 2,2,2-trifluoroethanol solvents induce self-assembly with different surface morphology in an aromatic dipeptide.
    Reddy SM; Shanmugam G; Mandal AB
    Org Biomol Chem; 2014 Aug; 12(32):6181-9. PubMed ID: 24999600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CHARMM force field parameterization protocol for self-assembling peptide amphiphiles: the Fmoc moiety.
    Ramos Sasselli I; Ulijn RV; Tuttle T
    Phys Chem Chem Phys; 2016 Feb; 18(6):4659-67. PubMed ID: 26794129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sheet-like assemblies of charged amphiphilic α/β-peptides at the air-water interface.
    Segman-Magidovich S; Lee MR; Vaiser V; Struth B; Gellman SH; Rapaport H
    Chemistry; 2011 Dec; 17(52):14857-66. PubMed ID: 22105992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.
    Mason TO; Chirgadze DY; Levin A; Adler-Abramovich L; Gazit E; Knowles TP; Buell AK
    ACS Nano; 2014 Feb; 8(2):1243-53. PubMed ID: 24422499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogelation and self-assembly of Fmoc-tripeptides: unexpected influence of sequence on self-assembled fibril structure, and hydrogel modulus and anisotropy.
    Cheng G; Castelletto V; Moulton CM; Newby GE; Hamley IW
    Langmuir; 2010 Apr; 26(7):4990-8. PubMed ID: 20073495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-assembly of Arg-Phe nanostructures via the solid-vapor phase method.
    Liberato MS; Kogikoski S; Silva ER; Coutinho-Neto MD; Scott LP; Silva RH; Oliveira VX; Ando RA; Alves WA
    J Phys Chem B; 2013 Jan; 117(3):733-40. PubMed ID: 23286315
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tuning the self-assembly of the bioactive dipeptide L-carnosine by incorporation of a bulky aromatic substituent.
    Castelletto V; Cheng G; Greenland BW; Hamley IW; Harris PJ
    Langmuir; 2011 Mar; 27(6):2980-8. PubMed ID: 21338121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphology transformation via pH-triggered self-assembly of peptides.
    Qin SY; Xu SS; Zhuo RX; Zhang XZ
    Langmuir; 2012 Jan; 28(4):2083-90. PubMed ID: 22142196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlled patterning of peptide nanotubes and nanospheres using inkjet printing technology.
    Adler-Abramovich L; Gazit E
    J Pept Sci; 2008 Feb; 14(2):217-23. PubMed ID: 18035858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescence by self-assembly: autofluorescent peptide vesicles and fibers.
    Sapra R; Gupta M; Khare K; Chowdhury PK; Haridas V
    Analyst; 2023 Feb; 148(5):973-984. PubMed ID: 36756978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-Assembled Peptide-Carbon Nitride Hydrogel as a Light-Responsive Scaffold Material.
    Ko JW; Choi WS; Kim J; Kuk SK; Lee SH; Park CB
    Biomacromolecules; 2017 Nov; 18(11):3551-3556. PubMed ID: 28825470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-assembly of t-butyloxycarbonyl protected dipeptide methyl esters composed of leucine, isoleucine, and valine into highly organized structures from alcohol and aqueous alcohol mixtures.
    Subbalakshmi C; Basak P; Nagaraj R
    Biopolymers; 2017 Nov; 108(6):. PubMed ID: 28589640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.