These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32261477)

  • 21. Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy.
    Song J; Huang P; Duan H; Chen X
    Acc Chem Res; 2015 Sep; 48(9):2506-15. PubMed ID: 26134093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Au-Protected Ag Core/Satellite Nanoassemblies for Excellent Extra-/Intracellular Surface-Enhanced Raman Scattering Activity.
    Zhang Z; Bando K; Taguchi A; Mochizuki K; Sato K; Yasuda H; Fujita K; Kawata S
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):44027-44037. PubMed ID: 29171749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ordered Arrangement and Optical Properties of Silica-Stabilized Gold Nanoparticle-PNIPAM Core-Satellite Clusters for Sensitive Raman Detection.
    Herrmann JF; Kretschmer F; Hoeppener S; Höppener C; Schubert US
    Small; 2017 Oct; 13(39):. PubMed ID: 28834089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controllable "Clicked-to-Assembled" Plasmonic Core-Satellite Nanostructures and Its Surface-Enhanced Fluorescence in Living Cells.
    Yang X; Li J; Deng L; Su D; Dong C; Ren J
    ACS Omega; 2019 Dec; 4(25):21161-21168. PubMed ID: 31867509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile fabrication of 2D hetero core-satellites patterned Ag nanoparticle arrays with tunable plasmonic bands for SERS detection.
    Cai Y; Huang L; Wang H; Dong W; Zhang Y; Zhang W; Liu Y; Li G; Shang F; Tong H
    Nanotechnology; 2019 Mar; 30(12):125701. PubMed ID: 30572325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tuning the Sensing Performance of Multilayer Plasmonic Core-Satellite Assemblies for Rapid Detection of Targets from Lysed Cells.
    Le NH; Nguyen BK; Ye G; Peng C; Chen JIL
    ACS Sens; 2017 Nov; 2(11):1578-1583. PubMed ID: 29130305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AFM-Nano Manipulation of Plasmonic Molecules Used as "Nano-Lens" to Enhance Raman of Individual Nano-Objects.
    D'Orlando A; Bayle M; Louarn G; Humbert B
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of dense two-dimensional assemblies over vast areas comprising gold(core)-silver(shell) nanoparticles and their surface-enhanced Raman scattering properties.
    Sugawa K; Tanoue Y; Ube T; Yanagida S; Yamamuro T; Kusaka Y; Ushijima H; Akiyama T
    Photochem Photobiol Sci; 2014 Jan; 13(1):82-91. PubMed ID: 24220219
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlled assembly and plasmonic properties of asymmetric core-satellite nanoassemblies.
    Yoon JH; Lim J; Yoon S
    ACS Nano; 2012 Aug; 6(8):7199-208. PubMed ID: 22827455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecularly linked 3D plasmonic nanoparticle core/satellite assemblies: SERS nanotags with single-particle Raman sensitivity.
    Schütz M; Schlücker S
    Phys Chem Chem Phys; 2015 Oct; 17(37):24356-60. PubMed ID: 26329892
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembled large Au nanoparticle arrays with regular hot spots for SERS.
    Chen A; DePrince AE; Demortière A; Joshi-Imre A; Shevchenko EV; Gray SK; Welp U; Vlasko-Vlasov VK
    Small; 2011 Aug; 7(16):2365-71. PubMed ID: 21630447
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of SERS-active core-satellite nanoparticles using heterobifunctional PEG linkers.
    San Juan AMT; Chavva SR; Tu D; Tircuit M; Coté G; Mabbott S
    Nanoscale Adv; 2021 Dec; 4(1):258-267. PubMed ID: 36132957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Directed assembly of gold nanorods using aligned electrospun polymer nanofibers for highly efficient SERS substrates.
    Lee CH; Tian L; Abbas A; Kattumenu R; Singamaneni S
    Nanotechnology; 2011 Jul; 22(27):275311. PubMed ID: 21613732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Core-satellite-satellite hierarchical nanostructures: assembly, plasmon coupling, and gap-selective surface-enhanced Raman scattering.
    Trinh HD; Kim S; Park J; Yoon S
    Nanoscale; 2022 Nov; 14(45):17003-17012. PubMed ID: 36354377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. "Clicked" plasmonic core-satellites: covalently assembled gold nanoparticles.
    Gandra N; Singamaneni S
    Chem Commun (Camb); 2012 Dec; 48(94):11540-2. PubMed ID: 23090071
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates.
    Matricardi C; Hanske C; Garcia-Pomar JL; Langer J; Mihi A; Liz-Marzán LM
    ACS Nano; 2018 Aug; 12(8):8531-8539. PubMed ID: 30106555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermoresponsive plasmonic core-satellite nanostructures with reversible, temperature sensitive optical properties.
    Han F; Vivekchand SRC; Soeriyadi AH; Zheng Y; Gooding JJ
    Nanoscale; 2018 Mar; 10(9):4284-4290. PubMed ID: 29442113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-assembled PVP-gold nanostar films as plasmonic substrates for surface-enhanced spectroscopies: influence of the polymeric coating on the enhancement efficiency.
    Tatar AS; Boca S; Falamas A; Cuibus D; Farcău C
    Analyst; 2023 Aug; 148(17):3992-4001. PubMed ID: 37526256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reversible Thermoresponsive Plasmonic Core-Satellite Nanostructures That Exhibit Both Expansion and Contraction (UCST and LCST).
    Han F; Soeriyadi AH; Gooding JJ
    Macromol Rapid Commun; 2018 Dec; 39(23):e1800451. PubMed ID: 30252981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates.
    Jubb AM; Jiao Y; Eres G; Retterer ST; Gu B
    Nanoscale; 2016 Mar; 8(10):5641-8. PubMed ID: 26893035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.