These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32261606)

  • 41. Ion-sensitive properties of organic electrochemical transistors.
    Lin P; Yan F; Chan HL
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1637-41. PubMed ID: 20499881
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tuning Organic Electrochemical Transistor (OECT) Transconductance toward Zero Gate Voltage in the Faradaic Mode.
    Yu S; Ratcliff EL
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):50176-50186. PubMed ID: 34644052
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metal-organic framework-based molecularly imprinted polymer as a high sensitive and selective hybrid for the determination of dopamine in injections and human serum samples.
    Zhang W; Duan D; Liu S; Zhang Y; Leng L; Li X; Chen N; Zhang Y
    Biosens Bioelectron; 2018 Oct; 118():129-136. PubMed ID: 30075383
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic and Tunable Threshold Voltage in Organic Electrochemical Transistors.
    Doris SE; Pierre A; Street RA
    Adv Mater; 2018 Apr; 30(15):e1706757. PubMed ID: 29498110
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sensitive organic electrochemical transistor biosensors: Comparing single and dual gate functionalization and different COOH-functionalized bioreceptor layers.
    Song Y; Zhang H; Mukhopadhyaya T; Hall AS; Katz HE
    Biosens Bioelectron; 2022 Nov; 216():114691. PubMed ID: 36113388
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultrahigh-Gain Organic Electrochemical Transistor Chemosensors Based on Self-Curled Nanomembranes.
    Ferro LMM; Merces L; de Camargo DHS; Bof Bufon CC
    Adv Mater; 2021 Jul; 33(29):e2101518. PubMed ID: 34061409
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Amplification of aptamer sensor signals by four orders of magnitude via interdigitated organic electrochemical transistors.
    Liang Y; Wu C; Figueroa-Miranda G; Offenhäusser A; Mayer D
    Biosens Bioelectron; 2019 Nov; 144():111668. PubMed ID: 31522101
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Indium tin oxide-coated glass modified with reduced graphene oxide sheets and gold nanoparticles as disposable working electrodes for dopamine sensing in meat samples.
    Yang J; Strickler JR; Gunasekaran S
    Nanoscale; 2012 Aug; 4(15):4594-602. PubMed ID: 22706569
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A facile strategy for quantitative sensing of glycans on cell surface using organic electrochemical transistors.
    Chen L; Wu J; Yan F; Ju H
    Biosens Bioelectron; 2021 Mar; 175():112878. PubMed ID: 33298337
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Highly selective and sensitive electrochemical detection of dopamine using a nafion coated hybrid macroporous gold modified electrode with platinum nanoparticles.
    Lee YJ; Park JY
    IEEE Trans Nanobioscience; 2011 Dec; 10(4):250-8. PubMed ID: 22128013
    [TBL] [Abstract][Full Text] [Related]  

  • 51. AC Measurements Using Organic Electrochemical Transistors for Accurate Sensing.
    Wang N; Liu Y; Fu Y; Yan F
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):25834-25840. PubMed ID: 28846372
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Textile Organic Electrochemical Transistors as a Platform for Wearable Biosensors.
    Gualandi I; Marzocchi M; Achilli A; Cavedale D; Bonfiglio A; Fraboni B
    Sci Rep; 2016 Sep; 6():33637. PubMed ID: 27667396
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PEDOT: Dye-Based, Flexible Organic Electrochemical Transistor for Highly Sensitive pH Monitoring.
    Mariani F; Gualandi I; Tessarolo M; Fraboni B; Scavetta E
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22474-22484. PubMed ID: 29883081
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing.
    Dong X; Wang X; Wang L; Song H; Zhang H; Huang W; Chen P
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3129-33. PubMed ID: 22574906
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrochemical detection of dopamine in the presence of ascorbic acid using PVP/graphene modified electrodes.
    Liu Q; Zhu X; Huo Z; He X; Liang Y; Xu M
    Talanta; 2012 Aug; 97():557-62. PubMed ID: 22841122
    [TBL] [Abstract][Full Text] [Related]  

  • 56. AC amplification gain in organic electrochemical transistors for impedance-based single cell sensors.
    Bonafè F; Decataldo F; Zironi I; Remondini D; Cramer T; Fraboni B
    Nat Commun; 2022 Sep; 13(1):5423. PubMed ID: 36109508
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Smartphone-based integrated voltammetry system for simultaneous detection of ascorbic acid, dopamine, and uric acid with graphene and gold nanoparticles modified screen-printed electrodes.
    Ji D; Liu Z; Liu L; Low SS; Lu Y; Yu X; Zhu L; Li C; Liu Q
    Biosens Bioelectron; 2018 Nov; 119():55-62. PubMed ID: 30098467
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative electrochemical study of new self-assembled monolayers of 2-{[(Z)-1-(3-furyl)methylidene]amino}-1-benzenethiol and 2-{[(2-sulfanylphenyl)imino]methyl}phenol for determination of dopamine in the presence of high concentration of ascorbic acid and uric acid.
    Behpour M; Ghoreishi SM; Honarmand E; Salavati-Niasari M
    Analyst; 2011 May; 136(9):1979-86. PubMed ID: 21409249
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sensitive HIV-1 detection in a homogeneous solution based on an electrochemical molecular beacon coupled with a nafion-graphene composite film modified screen-printed carbon electrode.
    Li B; Li Z; Situ B; Dai Z; Liu Q; Wang Q; Gu D; Zheng L
    Biosens Bioelectron; 2014 Feb; 52():330-6. PubMed ID: 24099877
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of loading carbon nanotubes onto chitosan films on electrochemical dopamine sensing in the presence of biological interference.
    Shukla SK; Lavon A; Shmulevich O; Ben-Yoav H
    Talanta; 2018 May; 181():57-64. PubMed ID: 29426541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.