BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32261635)

  • 1. A thermally triggered in situ hydrogel from poly(acrylic acid-co-N-isopropylacrylamide) for controlled release of anti-glaucoma drugs.
    Prasannan A; Tsai HC; Chen YS; Hsiue GH
    J Mater Chem B; 2014 Apr; 2(14):1988-1997. PubMed ID: 32261635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications.
    Alexander A; Ajazuddin ; Khan J; Saraf S; Saraf S
    Eur J Pharm Biopharm; 2014 Nov; 88(3):575-85. PubMed ID: 25092423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of controlled release ophthalmic drops, for glaucoma therapy using thermosensitive poly-N-isopropylacrylamide.
    Hsiue GH; Hsu SH; Yang CC; Lee SH; Yang IK
    Biomaterials; 2002 Jan; 23(2):457-62. PubMed ID: 11761166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injectable Thermoresponsive Hydrogel Formed by Alginate-g-Poly(N-isopropylacrylamide) That Releases Doxorubicin-Encapsulated Micelles as a Smart Drug Delivery System.
    Liu M; Song X; Wen Y; Zhu JL; Li J
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35673-35682. PubMed ID: 28937214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermo/pH Responsive Star and Linear Copolymers Containing a Cholic Acid-Derived Monomer,
    Castro-Hernández A; Cortez-Lemus NA
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31717987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulating drug release from pH- and temperature-responsive electrospun CTS-g-PNIPAAm/poly(ethylene oxide) hydrogel nanofibers.
    Yuan H; Li B; Liang K; Lou X; Zhang Y
    Biomed Mater; 2014 Aug; 9(5):055001. PubMed ID: 25135109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid)-grafted cellulose nanocrystals by reversible addition-fragmentation chain transfer polymerization.
    Zeinali E; Haddadi-Asl V; Roghani-Mamaqani H
    J Biomed Mater Res A; 2018 Jan; 106(1):231-243. PubMed ID: 28891247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the aggregation of conjugates of streptavidin with smart block copolymers prepared via the RAFT copolymerization technique.
    Kulkarni S; Schilli C; Grin B; Müller AH; Hoffman AS; Stayton PS
    Biomacromolecules; 2006 Oct; 7(10):2736-41. PubMed ID: 17025347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(acrylic acid)-grafted poly(N-isopropyl acrylamide) networks: preparation, characterization and hydrogel behavior.
    Yu R; Zheng S
    J Biomater Sci Polym Ed; 2011; 22(17):2305-24. PubMed ID: 21092421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-modulated separation of vascular cells using thermoresponsive-anionic block copolymer-modified glass.
    Hirotani T; Nagase K
    Regen Ther; 2024 Dec; 27():259-267. PubMed ID: 38601885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smart Hydrogel Formed by Alginate-
    Liu M; Zhu J; Song X; Wen Y; Li J
    Gels; 2022 Jul; 8(7):. PubMed ID: 35877526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermally induced polymeric assemblies from the PAAc-based copolymer containing both PNIPAAm and mPEG grafts in water.
    Chiang WH; Hsu YH; Chern CS; Chiu HC
    J Phys Chem B; 2009 Apr; 113(13):4187-96. PubMed ID: 19245225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of grafted thermosensitive hydrogels for heating activated controlled release.
    Ankareddi I; Brazel CS
    Int J Pharm; 2007 May; 336(2):241-7. PubMed ID: 17234371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and surface-active membranes from poly(vinylidene fluoride)-graft-poly(acrylic acid) prepared via RAFT-mediated graft copolymerization.
    Ying L; Yu WH; Kang ET; Neoh KG
    Langmuir; 2004 Jul; 20(14):6032-40. PubMed ID: 16459627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermosensitive copolymer coatings with enhanced wettability switching.
    Kurkuri MD; Nussio MR; Deslandes A; Voelcker NH
    Langmuir; 2008 Apr; 24(8):4238-44. PubMed ID: 18341365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A smart thermoresponsive adsorption system for efficient copper ion removal based on alginate-g-poly(N-isopropylacrylamide) graft copolymer.
    Liu M; Wen Y; Song X; Zhu JL; Li J
    Carbohydr Polym; 2019 Sep; 219():280-289. PubMed ID: 31151526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery.
    Cao Y; Zhang C; Shen W; Cheng Z; Yu LL; Ping Q
    J Control Release; 2007 Jul; 120(3):186-94. PubMed ID: 17582643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of SDS on the thermo- and pH-sensitive structural changes of the poly(acrylic acid)-based copolymer containing both poly(N-isopropylacrylamide) and monomethoxy poly(ethylene glycol) grafts in water.
    Hsu YH; Chiang WH; Chen MC; Chern CS; Chiu HC
    Langmuir; 2006 Aug; 22(16):6764-70. PubMed ID: 16863220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels.
    Zhang XZ; Wu DQ; Chu CC
    Biomaterials; 2004 Aug; 25(17):3793-805. PubMed ID: 15020155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyethyleneimine modified biocompatible poly(N-isopropylacrylamide)-based nanogels for drug delivery.
    Quan CY; Wei H; Sun YX; Cheng SX; Shen K; Gu ZW; Zhang XZ; Zhuo RX
    J Nanosci Nanotechnol; 2008 May; 8(5):2377-84. PubMed ID: 18572652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.