These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32261762)

  • 1. Supramolecular gels based on a gemini imidazolium amphiphile as molecular material for drug delivery.
    Rodrigues M; Calpena AC; Amabilino DB; Garduño-Ramírez ML; Pérez-García L
    J Mater Chem B; 2014 Sep; 2(33):5419-5429. PubMed ID: 32261762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel nanostructured supramolecular hydrogels for the topical delivery of anionic drugs.
    Limón D; Amirthalingam E; Rodrigues M; Halbaut L; Andrade B; Garduño-Ramírez ML; Amabilino DB; Pérez-García L; Calpena AC
    Eur J Pharm Biopharm; 2015 Oct; 96():421-36. PubMed ID: 26409201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug-Loaded Supramolecular Gels Prepared in a Microfluidic Platform: Distinctive Rheology and Delivery through Controlled Far-from-Equilibrium Mixing.
    Sathyanarayanan G; Rodrigues M; Limón D; Rodriguez-Trujillo R; Puigmartí-Luis J; Pérez-García L; Amabilino DB
    ACS Omega; 2017 Dec; 2(12):8849-8858. PubMed ID: 30023593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured supramolecular hydrogels: Towards the topical treatment of Psoriasis and other skin diseases.
    Limón D; Talló Domínguez K; Garduño-Ramírez ML; Andrade B; Calpena AC; Pérez-García L
    Colloids Surf B Biointerfaces; 2019 Sep; 181():657-670. PubMed ID: 31212138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular gels: using an amide-functionalized imidazolium-based surfactant.
    Cheng N; Kang Q; Xiao J; Du N; Yu L
    J Colloid Interface Sci; 2018 Feb; 511():215-221. PubMed ID: 29028572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycosyl squaramides, a new class of supramolecular gelators.
    Ramos J; Arufe S; Martin H; Rooney D; Elmes RBP; Erxleben A; Moreira R; Velasco-Torrijos T
    Soft Matter; 2020 Sep; 16(34):7916-7926. PubMed ID: 32724982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular Gels by Design: Towards the Development of Topical Gels for Self-Delivery Application.
    Parveen R; Dastidar P
    Chemistry; 2016 Jun; 22(27):9257-66. PubMed ID: 27226393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cationic Supramolecular Hydrogels for Overcoming the Skin Barrier in Drug Delivery.
    Limón D; Jiménez-Newman C; Rodrigues M; González-Campo A; Amabilino DB; Calpena AC; Pérez-García L
    ChemistryOpen; 2017 Aug; 6(4):585-598. PubMed ID: 28794954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular Synthon Approach in Developing Anti-Inflammatory Topical Gels for In Vivo Self-Delivery.
    Roy R; Dastidar P
    Chemistry; 2017 Nov; 23(62):15623-15627. PubMed ID: 28895213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A shear-induced network of aligned wormlike micelles in a sugar-based molecular gel. From gelation to biocompatibility assays.
    Fitremann J; Lonetti B; Fratini E; Fabing I; Payré B; Boulé C; Loubinoux I; Vaysse L; Oriol L
    J Colloid Interface Sci; 2017 Oct; 504():721-730. PubMed ID: 28622565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of solubility parameters in a D-sorbitol-based organogel in binary organic mixtures.
    Tong C; Fan K; Niu L; Li J; Guan X; Tao N; Shen H; Song J
    Soft Matter; 2014 Feb; 10(5):767-72. PubMed ID: 24836862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multidrug-Containing, Salt-Based, Injectable Supramolecular Gels for Self-Delivery, Cell Imaging and Other Materials Applications.
    Roy R; Dastidar P
    Chemistry; 2016 Oct; 22(42):14929-14939. PubMed ID: 27578557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of thermal sensitive folic acid based supramolecular hybrid gels for injectable drug release gels.
    Song Y; Gao J; Xu X; Zhao H; Xue R; Zhou J; Hong W; Qiu H
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():706-713. PubMed ID: 28415519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrene-based fluorescent supramolecular hydrogel: scaffold for energy transfer.
    Mukherjee S; Kar T; Das PK
    Chem Asian J; 2014 Oct; 9(10):2798-805. PubMed ID: 25056417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral bis(amino acid)- and bis(amino alcohol)-oxalamide gelators. Gelation properties, self-assembly motifs and chirality effects.
    Frkanec L; Zinić M
    Chem Commun (Camb); 2010 Jan; 46(4):522-37. PubMed ID: 20062853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the effect of supramolecular gel phase crystallization on gel nucleation.
    Dawn A; Mirzamani M; Jones CD; Yufit DS; Qian S; Steed JW; Kumari H
    Soft Matter; 2018 Nov; 14(46):9489-9497. PubMed ID: 30431638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of silica xerogels as carriers for drugs.
    Czarnobaj K
    Drug Deliv; 2008 Nov; 15(8):485-92. PubMed ID: 18798086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbohydrate-supramolecular gels: Adsorbents for chromium(VI) removal from wastewater.
    Rizzo C; Andrews JL; Steed JW; D'Anna F
    J Colloid Interface Sci; 2019 Jul; 548():184-196. PubMed ID: 31003165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphiphilic gels as a potential carrier for topical drug delivery.
    Prasad V; Kumar N; Mishra PR
    Drug Deliv; 2007 Feb; 14(2):75-85. PubMed ID: 17364871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gelation of microemulsions and release behavior of sodium salicylate from gelled microemulsions.
    Feng G; Xiong Y; Wang H; Yang Y
    Eur J Pharm Biopharm; 2009 Feb; 71(2):297-302. PubMed ID: 18793724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.