These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32261908)

  • 1. Coacervate-directed synthesis of CaCO
    Lauth V; Maas M; Rezwan K
    J Mater Chem B; 2014 Nov; 2(44):7725-7731. PubMed ID: 32261908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-Responsive Coacervate Droplets Formed from Acid-Labile Methylated Polyrotaxanes as an Injectable Protein Carrier.
    Nishida K; Tamura A; Yui N
    Biomacromolecules; 2018 Jun; 19(6):2238-2247. PubMed ID: 29689157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomineralization of stable and monodisperse vaterite microspheres using silk nanoparticles.
    Liu L; Zhang X; Liu X; Liu J; Lu G; Kaplan DL; Zhu H; Lu Q
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1735-45. PubMed ID: 25578091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Hybrid Capsules via CaCO
    Komatsu S; Ikedo Y; Asoh TA; Ishihara R; Kikuchi A
    Langmuir; 2018 Apr; 34(13):3981-3986. PubMed ID: 29554803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of calcium carbonate microspheres and their potential application as drug carriers.
    Song J; Wang R; Liu Z; Zhang H
    Mol Med Rep; 2018 Jun; 17(6):8403-8408. PubMed ID: 29658586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein Encapsulation via Polypeptide Complex Coacervation.
    Black KA; Priftis D; Perry SL; Yip J; Byun WY; Tirrell M
    ACS Macro Lett; 2014 Oct; 3(10):1088-1091. PubMed ID: 35610798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticulation of bovine serum albumin and poly-d-lysine through complex coacervation and encapsulation of curcumin.
    Maldonado L; Sadeghi R; Kokini J
    Colloids Surf B Biointerfaces; 2017 Nov; 159():759-769. PubMed ID: 28881302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein encapsulation via polyelectrolyte complex coacervation: Protection against protein denaturation.
    Zhao M; Zacharia NS
    J Chem Phys; 2018 Oct; 149(16):163326. PubMed ID: 30384671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encapsulation of albumin in self-assembled layer-by-layer microcapsules: comparison of co-precipitation and adsorption techniques.
    Labala S; Mandapalli PK; Bhatnagar S; Venuganti VV
    Drug Dev Ind Pharm; 2015; 41(8):1302-10. PubMed ID: 25104114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ mineralization of anticancer drug into calcium carbonate monodisperse nanospheres and their pH-responsive release property.
    Yang T; Wan Z; Liu Z; Li H; Wang H; Lu N; Chen Z; Mei X; Ren X
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():384-92. PubMed ID: 27040233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emulsion stabilisation by complexes of oppositely charged synthetic polyelectrolytes.
    Bago Rodriguez AM; Binks BP; Sekine T
    Soft Matter; 2018 Jan; 14(2):239-254. PubMed ID: 29231947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Strategy to Encapsulate Antibiotics in a Bioinspired CaCO3 Structure Enabling pH-Sensitive Drug Release Apt for Therapeutic and Imaging Applications.
    Begum G; Reddy TN; Kumar KP; Dhevendar K; Singh S; Amarnath M; Misra S; Rangari VK; Rana RK
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22056-63. PubMed ID: 27513816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-coacervation of ampholyte polymer chains as an efficient encapsulation strategy.
    Perro A; Giraud L; Coudon N; Shanmugathasan S; Lapeyre V; Goudeau B; Douliez JP; Ravaine V
    J Colloid Interface Sci; 2019 Jul; 548():275-283. PubMed ID: 31004960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophilic drug encapsulation in shell-core microcarriers by two stage polyelectrolyte complexation method.
    Dalmoro A; Sitenkov AY; Cascone S; Lamberti G; Barba AA; Moustafine RI
    Int J Pharm; 2017 Feb; 518(1-2):50-58. PubMed ID: 28034735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural study of coacervation in protein-polyelectrolyte complexes.
    Chodankar S; Aswal VK; Kohlbrecher J; Vavrin R; Wagh AG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031913. PubMed ID: 18851071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-Responsive mineralized nanoparticles as stable nanocarriers for intracellular nitric oxide delivery.
    Lee HJ; Kim da E; Park DJ; Choi GH; Yang DN; Heo JS; Lee SC
    Colloids Surf B Biointerfaces; 2016 Oct; 146():1-8. PubMed ID: 27240199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-induced coacervation in complexes of bovine serum albumin and cationic polyelectrolytes.
    Kaibara K; Okazaki T; Bohidar HB; Dubin PL
    Biomacromolecules; 2000; 1(1):100-7. PubMed ID: 11709831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of structural perturbations in bovine serum albumin by non-aqueous microencapsulation.
    Carrasquillo KG; Carro JC; Alejandro A; Toro DD; Griebenow K
    J Pharm Pharmacol; 2001 Jan; 53(1):115-20. PubMed ID: 11206185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobility of model proteins in hydrogels composed of oppositely charged dextran microspheres studied by protein release and fluorescence recovery after photobleaching.
    Van Tomme SR; De Geest BG; Braeckmans K; De Smedt SC; Siepmann F; Siepmann J; van Nostrum CF; Hennink WE
    J Control Release; 2005 Dec; 110(1):67-78. PubMed ID: 16253375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous preparation and evaluation of albumin-chitosan microspheres containing indomethacin.
    Bayomi MA
    Drug Dev Ind Pharm; 2004 Apr; 30(4):329-39. PubMed ID: 15132175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.