These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32262315)

  • 1. What makes a good graphene-binding peptide? Adsorption of amino acids and peptides at aqueous graphene interfaces.
    Hughes ZE; Walsh TR
    J Mater Chem B; 2015 Apr; 3(16):3211-3221. PubMed ID: 32262315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient simulations of the aqueous bio-interface of graphitic nanostructures with a polarisable model.
    Hughes ZE; Tomásio SM; Walsh TR
    Nanoscale; 2014 May; 6(10):5438-48. PubMed ID: 24722915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathways to Structure-Property Relationships of Peptide-Materials Interfaces: Challenges in Predicting Molecular Structures.
    Walsh TR
    Acc Chem Res; 2017 Jul; 50(7):1617-1624. PubMed ID: 28665581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facet selectivity in gold binding peptides: exploiting interfacial water structure.
    Wright LB; Palafox-Hernandez JP; Rodger PM; Corni S; Walsh TR
    Chem Sci; 2015 Sep; 6(9):5204-5214. PubMed ID: 29449926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface.
    Ou L; Luo Y; Wei G
    J Phys Chem B; 2011 Aug; 115(32):9813-22. PubMed ID: 21692466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient conformational sampling of peptides adsorbed onto inorganic surfaces: insights from a quartz binding peptide.
    Wright LB; Walsh TR
    Phys Chem Chem Phys; 2013 Apr; 15(13):4715-26. PubMed ID: 23423310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomolecular adsorption at aqueous silver interfaces: first-principles calculations, polarizable force-field simulations, and comparisons with gold.
    Hughes ZE; Wright LB; Walsh TR
    Langmuir; 2013 Oct; 29(43):13217-29. PubMed ID: 24079907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of peptide-fatty acid bioconjugates on graphene: effects of fatty acid chain length and attachment point.
    Perdomo Y; Jin R; Parab AD; Knecht MR; Walsh TR
    J Mater Chem B; 2022 Aug; 10(31):6018-6025. PubMed ID: 35894139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Interactions between Graphene and Biological Molecules.
    Zou X; Wei S; Jasensky J; Xiao M; Wang Q; Brooks Iii CL; Chen Z
    J Am Chem Soc; 2017 Feb; 139(5):1928-1936. PubMed ID: 28092440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing nano-patterned peptide self-organisation at the aqueous graphene interface.
    Hughes ZE; Walsh TR
    Nanoscale; 2017 Dec; 10(1):302-311. PubMed ID: 29210426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exhaustively sampling peptide adsorption with metadynamics.
    Deighan M; Pfaendtner J
    Langmuir; 2013 Jun; 29(25):7999-8009. PubMed ID: 23706011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of a peptide adsorbed on graphene and graphite.
    Katoch J; Kim SN; Kuang Z; Farmer BL; Naik RR; Tatulian SA; Ishigami M
    Nano Lett; 2012 May; 12(5):2342-6. PubMed ID: 22471315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding affinities of amino acid analogues at the charged aqueous titania interface: implications for titania-binding peptides.
    Sultan AM; Hughes ZE; Walsh TR
    Langmuir; 2014 Nov; 30(44):13321-9. PubMed ID: 25317483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Disruption of an Adenosine-Binding DNA Aptamer on Graphene: Implications for Aptasensor Design.
    Hughes ZE; Walsh TR
    ACS Sens; 2017 Nov; 2(11):1602-1611. PubMed ID: 29063764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Essential slow degrees of freedom in protein-surface simulations: A metadynamics investigation.
    Prakash A; Sprenger KG; Pfaendtner J
    Biochem Biophys Res Commun; 2018 Mar; 498(2):274-281. PubMed ID: 28720500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous Peptide-TiO2 Interfaces: Isoenergetic Binding via Either Entropically or Enthalpically Driven Mechanisms.
    Sultan AM; Westcott ZC; Hughes ZE; Palafox-Hernandez JP; Giesa T; Puddu V; Buehler MJ; Perry CC; Walsh TR
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18620-30. PubMed ID: 27355097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of interaction with coesite silica on the conformation of Cecropin P1 using explicit solvent molecular dynamics simulation.
    Wu X; Chang H; Mello C; Nagarajan R; Narsimhan G
    J Chem Phys; 2013 Jan; 138(4):045103. PubMed ID: 23387625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of cation-pi interactions in biomolecular association. Design of peptides favoring interactions between cationic and aromatic amino acid side chains.
    Pletneva EV; Laederach AT; Fulton DB; Kostic NM
    J Am Chem Soc; 2001 Jul; 123(26):6232-45. PubMed ID: 11427046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.