These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32262390)

  • 1. Correction: Tailor-made gemcitabine prodrug nanoparticles from well-defined drug-polymer amphiphiles prepared by controlled living radical polymerization for cancer chemotherapy.
    Wang W; Li C; Zhang J; Dong A; Kong D
    J Mater Chem B; 2015 Mar; 3(10):2229. PubMed ID: 32262390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailor-made gemcitabine prodrug nanoparticles from well-defined drug-polymer amphiphiles prepared by controlled living radical polymerization for cancer chemotherapy.
    Wang W; Li C; Zhang J; Dong A; Kong D
    J Mater Chem B; 2014 Apr; 2(13):1891-1901. PubMed ID: 32261525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction: Stent containing CD44-targeting polymeric prodrug nanoparticles that release paclitaxel and gemcitabine in a time interval-controlled manner for synergistic human biliary cancer therapy.
    Yun D; Kim HO; Son HY; Choi Y; Noh I; Lim JW; Kim J; Chun H; Park G; Lee DK; Jang SI; Jang E; Huh YM; Haam S
    J Mater Chem B; 2017 Nov; 5(44):8879. PubMed ID: 32264281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Capacity Drug Carriers from Common Polymer Amphiphiles.
    Zhou Z; Munyaradzi O; Xia X; Green D; Bong D
    Biomacromolecules; 2016 Sep; 17(9):3060-6. PubMed ID: 27476544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methotrexate-based amphiphilic prodrug nanoaggregates for co-administration of multiple therapeutics and synergistic cancer therapy.
    Hou M; Gao YE; Shi X; Bai S; Ma X; Li B; Xiao B; Xue P; Kang Y; Xu Z
    Acta Biomater; 2018 Sep; 77():228-239. PubMed ID: 30006314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent polymer prodrug nanoparticles with aggregation-induced emission (AIE) properties from nitroxide-mediated polymerization.
    Bao Y; Guégain E; Nicolas V; Nicolas J
    Chem Commun (Camb); 2017 Apr; 53(32):4489-4492. PubMed ID: 28382332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization.
    Ohno K; Mori C; Akashi T; Yoshida S; Tago Y; Tsujii Y; Tabata Y
    Biomacromolecules; 2013 Oct; 14(10):3453-62. PubMed ID: 23957585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells.
    Kashyap S; Singh N; Surnar B; Jayakannan M
    Biomacromolecules; 2016 Jan; 17(1):384-98. PubMed ID: 26652038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Reductive-Responsive Prodrug Nanoparticles with Superior Structural Stability by Polymerization-Induced Self-Assembly and Functional Nanoscopic Platform for Drug Delivery.
    Zhang WJ; Hong CY; Pan CY
    Biomacromolecules; 2016 Sep; 17(9):2992-9. PubMed ID: 27548375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Synthesis of Polymer Prodrug by Thiol-Acrylate Michael Addition Reaction and Fabrication of pH-Responsive Prodrug Nanoparticles.
    Xu CR; Qiu L; Pan CY; Hong CY; Hao ZY
    Bioconjug Chem; 2018 Sep; 29(9):3203-3212. PubMed ID: 30075069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atom transfer radical polymerization from nanoparticles: a tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/"living" radical polymerizations from surfaces.
    von Werne T; Patten TE
    J Am Chem Soc; 2001 Aug; 123(31):7497-505. PubMed ID: 11480969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ring-opening polymerization of prodrugs: a versatile approach to prepare well-defined drug-loaded nanoparticles.
    Liu J; Liu W; Weitzhandler I; Bhattacharyya J; Li X; Wang J; Qi Y; Bhattacharjee S; Chilkoti A
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):1002-6. PubMed ID: 25427831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes.
    Zoppe JO; Ataman NC; Mocny P; Wang J; Moraes J; Klok HA
    Chem Rev; 2017 Feb; 117(3):1105-1318. PubMed ID: 28135076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correction: Blood compatibility of a new zwitterionic bare metal stent with hyperbranched polymer brushes.
    Wang X; Chen X; Xing L; Mao C; Yu H; Shen J
    J Mater Chem B; 2022 Jan; 10(3):478. PubMed ID: 35015023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correction: Engineering an adhesive based on photosensitive polymer hydrogels and silver nanoparticles for wound healing.
    Tang Q; Chen C; Jiang Y; Huang J; Liu Y; Nthumba PM; Gu G; Wu X; Zhao Y; Ren J
    J Mater Chem B; 2022 Feb; 10(6):978-979. PubMed ID: 35098287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and Assembly of Laccase-Polymer Giant Amphiphiles by Self-Catalyzed CuAAC Click Chemistry.
    Bao C; Yin Y; Zhang Q
    Biomacromolecules; 2018 May; 19(5):1539-1551. PubMed ID: 29562131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward living radical polymerization.
    Moad G; Rizzardo E; Thang SH
    Acc Chem Res; 2008 Sep; 41(9):1133-42. PubMed ID: 18700787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing Precisely Defined Drug-Loaded Nanoparticles by Ring-Opening Polymerization of a Paclitaxel Prodrug.
    Liu J; Pang Y; Bhattacharyya J; Liu W; Weitzhandler I; Li X; Chilkoti A
    Adv Healthc Mater; 2016 Aug; 5(15):1868-73. PubMed ID: 27111757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel glucosylceramide synthase inhibitor based prodrug copolymer micelles for delivery of anticancer agents.
    Xu J; Zhao W; Sun J; Huang Y; Wang P; Venkataramanan R; Yang D; Ma X; Rana A; Li S
    J Control Release; 2018 Oct; 288():212-226. PubMed ID: 30223045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correction: Comment on "Isomerization of the methoxy radical revisited: the impact of water dimers" by B. Bandyopadhyay et al., Phys. Chem. Chem. Phys., 2016, 18, 27728 and "Isomerization of methoxy radical in the troposphere: competition between acidic, neutral and basic catalysts" by P. Kumar, B. Bandyopadhyay et al., Phys. Chem. Chem. Phys., 2017, 19, 278.
    Dibble TS
    Phys Chem Chem Phys; 2018 May; 20(20):14264. PubMed ID: 29740647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.