These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. In Situ Mineralizing Spinning of Strong and Tough Silk Fibers for Optical Waveguides. Zhang Y; Lu H; Zhang M; Hou Z; Li S; Wang H; Wu XE; Zhang Y ACS Nano; 2023 Mar; 17(6):5905-5912. PubMed ID: 36892421 [TBL] [Abstract][Full Text] [Related]
6. Dry-Spinning of Artificial Spider Silk Ribbons From Regenerated Natural Spidroin in an Organic Medium. Wang MY; Zhang JP; Chen SL; Qi B; Yao XY; Zhang XH; Li YT; Yang ZH Macromol Rapid Commun; 2023 Jun; 44(12):e2300024. PubMed ID: 37078381 [TBL] [Abstract][Full Text] [Related]
7. Bio-Inspired Stretchable and Contractible Tough Fiber by the Hybridization of GO/MWNT/Polyurethane. Kim H; Jang Y; Lee DY; Moon JH; Choi JG; Spinks GM; Gambhir S; Officer DL; Wallace GG; Kim SJ ACS Appl Mater Interfaces; 2019 Aug; 11(34):31162-31168. PubMed ID: 31356738 [TBL] [Abstract][Full Text] [Related]
8. Tough synthetic spider-silk fibers obtained by titanium dioxide incorporation and formaldehyde cross-linking in a simple wet-spinning process. Zhu H; Sun Y; Yi T; Wang S; Mi J; Meng Q Biochimie; 2020 Aug; 175():77-84. PubMed ID: 32417459 [TBL] [Abstract][Full Text] [Related]
9. Artificial ligament made from silk protein/Laponite hybrid fibers. Dong Q; Cai J; Wang H; Chen S; Liu Y; Yao J; Shao Z; Chen X Acta Biomater; 2020 Apr; 106():102-113. PubMed ID: 32014583 [TBL] [Abstract][Full Text] [Related]
10. Super-Strong, Super-Stiff, and Super-Tough Fluorescent Alginate Fibers with Outstanding Tolerance to Extreme Conditions. Wu Z; Wang K; Chen J; Chang J; Zhu S; Xie C; Liu Y; Wang Z; Zhang L Small; 2024 Sep; ():e2406163. PubMed ID: 39308423 [TBL] [Abstract][Full Text] [Related]
11. Insights into Silk Formation Process: Correlation of Mechanical Properties and Structural Evolution during Artificial Spinning of Silk Fibers. Fang G; Huang Y; Tang Y; Qi Z; Yao J; Shao Z; Chen X ACS Biomater Sci Eng; 2016 Nov; 2(11):1992-2000. PubMed ID: 33440535 [TBL] [Abstract][Full Text] [Related]
12. Structural Changes in Spider Dragline Silk after Repeated Supercontraction-Stretching Processes. Hu L; Chen Q; Yao J; Shao Z; Chen X Biomacromolecules; 2020 Dec; 21(12):5306-5314. PubMed ID: 33206498 [TBL] [Abstract][Full Text] [Related]
13. Progress and Trends in Artificial Silk Spinning: A Systematic Review. Koeppel A; Holland C ACS Biomater Sci Eng; 2017 Mar; 3(3):226-237. PubMed ID: 33465923 [TBL] [Abstract][Full Text] [Related]
14. A Protein-Like Nanogel for Spinning Hierarchically Structured Artificial Spider Silk. He W; Qian D; Wang Y; Zhang G; Cheng Y; Hu X; Wen K; Wang M; Liu Z; Zhou X; Zhu M Adv Mater; 2022 Jul; 34(27):e2201843. PubMed ID: 35509216 [TBL] [Abstract][Full Text] [Related]
15. Hybrid Silk Fibers Dry-Spun from Regenerated Silk Fibroin/Graphene Oxide Aqueous Solutions. Zhang C; Zhang Y; Shao H; Hu X ACS Appl Mater Interfaces; 2016 Feb; 8(5):3349-58. PubMed ID: 26784289 [TBL] [Abstract][Full Text] [Related]
17. Diverse formulas for spider dragline fibers demonstrated by molecular and mechanical characterization of spitting spider silk. Correa-Garhwal SM; Garb JE Biomacromolecules; 2014 Dec; 15(12):4598-605. PubMed ID: 25340514 [TBL] [Abstract][Full Text] [Related]
18. Structural and optical studies on selected web spinning spider silks. Karthikeyani R; Divya A; Mathavan T; Asath RM; Benial AM; Muthuchelian K Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 170():111-6. PubMed ID: 27423109 [TBL] [Abstract][Full Text] [Related]
19. The Size Effect of Silver Nanoparticles on Reinforcing the Mechanical Properties of Regenerated Fibers. Guo J; Xu C; Yang B; Li H; Wu G Molecules; 2023 Feb; 28(4):. PubMed ID: 36838738 [TBL] [Abstract][Full Text] [Related]