These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32262650)

  • 1. Glucose oxidase-directed, instant synthesis of Mn-doped ZnS quantum dots in neutral media with retained enzymatic activity: mechanistic study and biosensing application.
    Zhang J; Zhu A; Zhao T; Wu L; Wu P; Hou X
    J Mater Chem B; 2015 Aug; 3(29):5942-5950. PubMed ID: 32262650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids.
    Wu P; He Y; Wang HF; Yan XP
    Anal Chem; 2010 Feb; 82(4):1427-33. PubMed ID: 20092317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-directed synthesis of Mn-doped ZnS quantum dots: a dual-channel biosensor for two proteins.
    Wu P; Zhao T; Tian Y; Wu L; Hou X
    Chemistry; 2013 Jun; 19(23):7473-9. PubMed ID: 23576296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aqueous synthesis of Ag and Mn co-doped In
    Lai PY; Huang CC; Chou TH; Ou KL; Chang JY
    Acta Biomater; 2017 Mar; 50():522-533. PubMed ID: 27998812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorescence detection of L-ascorbic acid with surface-attached N-acetyl-L-cysteine and L-cysteine Mn doped ZnS quantum dots.
    Bian W; Ma J; Guo W; Lu D; Fan M; Wei Y; Li Y; Shuang S; Choi MM
    Talanta; 2013 Nov; 116():794-800. PubMed ID: 24148476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room-temperature phosphorescent discrimination of catechol from resorcinol and hydroquinone based on sodium tripolyphosphate capped Mn-doped ZnS quantum dots.
    Wang HF; Wu YY; Yan XP
    Anal Chem; 2013 Feb; 85(3):1920-5. PubMed ID: 23270545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetically engineered Cd-free quantum dots as dual-modality probes for fluorescence/magnetic resonance imaging of tumors.
    Ding K; Jing L; Liu C; Hou Y; Gao M
    Biomaterials; 2014 Feb; 35(5):1608-17. PubMed ID: 24239108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mn-doped ZnS quantum dots for the determination of acetone by phosphorescence attenuation.
    Sotelo-Gonzalez E; Fernandez-Argüelles MT; Costa-Fernandez JM; Sanz-Medel A
    Anal Chim Acta; 2012 Jan; 712():120-6. PubMed ID: 22177074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous synthesis of highly luminescent glutathione-capped Mn²⁺-doped ZnS quantum dots.
    Kolmykov O; Coulon J; Lalevée J; Alem H; Medjahdi G; Schneider R
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():17-23. PubMed ID: 25280675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecularly imprinted polymer coated Mn-doped ZnS quantum dots embedded in a metal-organic framework as a probe for selective room temperature phosphorescence detection of chlorpyrifos.
    Fan M; Gan T; Yin G; Cheng F; Zhao N
    RSC Adv; 2021 Aug; 11(45):27845-27854. PubMed ID: 35480778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatible ZnS:Mn quantum dots for reactive oxygen generation and detection in aqueous media.
    Diaz-Diestra D; Beltran-Huarac J; Bracho-Rincon DP; González-Feliciano JA; González CI; Weiner BR; Morell G
    J Nanopart Res; 2015; 17(12):461. PubMed ID: 26692814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiolate-Capped CdSe/ZnS Core-Shell Quantum Dots for the Sensitive Detection of Glucose.
    Abd Rahman S; Ariffin N; Yusof NA; Abdullah J; Mohammad F; Ahmad Zubir Z; Nik Abd Aziz NMA
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28671559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly selective manganese-doped zinc sulfide quantum dots based label free phosphorescent sensor for phosphopeptides in presence of zirconium (IV).
    Gong Y; Fan Z
    Biosens Bioelectron; 2015 Apr; 66():533-8. PubMed ID: 25506901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of enoxacin in biological fluids.
    He Y; Wang HF; Yan XP
    Anal Chem; 2008 May; 80(10):3832-7. PubMed ID: 18407673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bandgap- and Radial-Position-Dependent Mn-Doped Zn-Cu-In-S/ZnS Core/Shell Nanocrystals.
    Peng L; Huang K; Zhang Z; Zhang Y; Shi Z; Xie R; Yang W
    Chemphyschem; 2016 Mar; 17(5):752-8. PubMed ID: 26419419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-Cysteine capped Mn-doped ZnS quantum dots as a room temperature phosphorescence sensor for in-vitro binding assay of idarubicin and DNA.
    Ertas N; Satana Kara HE
    Biosens Bioelectron; 2015 Aug; 70():345-50. PubMed ID: 25840021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New application of Mn-doped ZnS quantum dots: phosphorescent sensor for the rapid screening of chloramphenicol and tetracycline residues.
    Liu Z; Hou J; He Q; Luo X; Huo D; Hou C
    Anal Methods; 2020 Jul; 12(27):3513-3522. PubMed ID: 32672268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable aqueous ZnS quantum dots obtained using (3-mercaptopropyl)trimethoxysilane as a capping molecule.
    Li H; Shih WY; Shih WH
    Nanotechnology; 2007 Dec; 18(49):495605. PubMed ID: 20442479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorescent sensing of Cr3+ with protein-functionalized Mn-doped ZnS quantum dots.
    Zhao T; Hou X; Xie YN; Wu L; Wu P
    Analyst; 2013 Nov; 138(21):6589-94. PubMed ID: 24000338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doped zinc sulfide quantum dots based phosphorescence turn-off/on probe for detecting histidine in biological fluid.
    Bian W; Wang F; Wei Y; Wang L; Liu Q; Dong W; Shuang S; Choi MM
    Anal Chim Acta; 2015 Jan; 856():82-9. PubMed ID: 25542361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.