BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 32262726)

  • 1. Effect of direct loading of phytoestrogens into the calcium phosphate scaffold on osteoporotic bone tissue regeneration.
    Tripathi G; Raja N; Yun HS
    J Mater Chem B; 2015 Nov; 3(44):8694-8703. PubMed ID: 32262726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simultaneous 3D printing process for the fabrication of bioceramic and cell-laden hydrogel core/shell scaffolds with potential application in bone tissue regeneration.
    Raja N; Yun HS
    J Mater Chem B; 2016 Jul; 4(27):4707-4716. PubMed ID: 32263243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering.
    Guo H; Su J; Wei J; Kong H; Liu C
    Acta Biomater; 2009 Jan; 5(1):268-78. PubMed ID: 18722167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradable calcium deficient hydroxyapatite/poly(lactic-glycolic acid copolymer) bilayer scaffold through integral molding 3D printing for bone defect repair.
    Wu N; Liu J; Ma W; Dong X; Wang F; Yang D; Xu Y
    Biofabrication; 2021 Mar; 13(2):. PubMed ID: 33202398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo approach of calcium deficient hydroxyapatite filler as bone induction factor.
    Cardoso GBC; Tondon A; Maia LRB; Cunha MR; Zavaglia CAC; Kaunas RR
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():999-1006. PubMed ID: 30889775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture.
    Barba A; Maazouz Y; Diez-Escudero A; Rappe K; Espanol M; Montufar EB; Öhman-Mägi C; Persson C; Fontecha P; Manzanares MC; Franch J; Ginebra MP
    Acta Biomater; 2018 Oct; 79():135-147. PubMed ID: 30195084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel composite scaffold of Cu-doped nano calcium-deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration.
    Mou P; Peng H; Zhou L; Li L; Li H; Huang Q
    Int J Nanomedicine; 2019; 14():3331-3343. PubMed ID: 31123401
    [No Abstract]   [Full Text] [Related]  

  • 8. Multifunctional Calcium-Deficient Hydroxyl Apatite-Alginate Core-Shell-Structured Bone Substitutes as Cell and Drug Delivery Vehicles for Bone Tissue Regeneration.
    Raja N; Park H; Choi YJ; Yun HS
    ACS Biomater Sci Eng; 2021 Mar; 7(3):1123-1133. PubMed ID: 33541070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional bone substitute using carbon dot and 3D printed calcium-deficient hydroxyapatite scaffolds for osteoclast inhibition and fluorescence imaging.
    Lee KK; Raja N; Yun HS; Lee SC; Lee CS
    Acta Biomater; 2023 Mar; 159():382-393. PubMed ID: 36669550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Injectable magnesium oxychloride cement foam-derived scaffold for augmenting osteoporotic defect repair.
    Zhu Y; Guo J; Sheng Y; Xu J; Qin L; Ngai T
    J Colloid Interface Sci; 2023 Jun; 640():199-210. PubMed ID: 36863177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-Deficient Hydroxyapatite/Collagen/Platelet-Rich Plasma Scaffold with Controlled Release Function for Hard Tissue Regeneration.
    Lee J; Kim G
    ACS Biomater Sci Eng; 2018 Jan; 4(1):278-289. PubMed ID: 33418694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced healing of rat calvarial defects with sulfated chitosan-coated calcium-deficient hydroxyapatite/bone morphogenetic protein 2 scaffolds.
    Zhao J; Shen G; Liu C; Wang S; Zhang W; Zhang X; Zhang X; Ye D; Wei J; Zhang Z; Jiang X
    Tissue Eng Part A; 2012 Jan; 18(1-2):185-97. PubMed ID: 21830854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic cellulose/calcium-deficient-hydroxyapatite composite scaffolds fabricated using an electric field for bone tissue engineering.
    Kim M; Yeo M; Kim M; Kim G
    RSC Adv; 2018 Jun; 8(37):20637-20647. PubMed ID: 35542321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis.
    Song JE; Tripathy N; Lee DH; Park JH; Khang G
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):32955-32964. PubMed ID: 30188112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteoinduction by Foamed and 3D-Printed Calcium Phosphate Scaffolds: Effect of Nanostructure and Pore Architecture.
    Barba A; Diez-Escudero A; Maazouz Y; Rappe K; Espanol M; Montufar EB; Bonany M; Sadowska JM; Guillem-Marti J; Öhman-Mägi C; Persson C; Manzanares MC; Franch J; Ginebra MP
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41722-41736. PubMed ID: 29116737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simultaneous process of 3D magnesium phosphate scaffold fabrication and bioactive substance loading for hard tissue regeneration.
    Lee J; Farag MM; Park EK; Lim J; Yun HS
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():252-60. PubMed ID: 24433911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of osteoblasts and preosteoblasts to calcium deficient and Si substituted hydroxyapatites treated at different temperatures.
    Matesanz MC; Linares J; Oñaderra M; Feito MJ; Martínez-Vázquez FJ; Sánchez-Salcedo S; Arcos D; Portolés MT; Vallet-Regí M
    Colloids Surf B Biointerfaces; 2015 Sep; 133():304-13. PubMed ID: 26123851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of platelet-rich plasma on the in vitro proliferation and osteogenic differentiation of human mesenchymal stem cells on distinct calcium phosphate scaffolds: the specific surface area makes a difference.
    Kasten P; Vogel J; Beyen I; Weiss S; Niemeyer P; Leo A; Lüginbuhl R
    J Biomater Appl; 2008 Sep; 23(2):169-88. PubMed ID: 18632770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.