These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels. Ma M; Kuang Y; Gao Y; Zhang Y; Gao P; Xu B J Am Chem Soc; 2010 Mar; 132(8):2719-28. PubMed ID: 20131781 [TBL] [Abstract][Full Text] [Related]
5. Structure and properties of cholesterol-based hydrogelators with varying hydrophilic terminals: biocompatibility and development of antibacterial soft nanocomposites. Dutta S; Kar T; Mandal D; Das PK Langmuir; 2013 Jan; 29(1):316-27. PubMed ID: 23214716 [TBL] [Abstract][Full Text] [Related]
6. Exceptionally small supramolecular hydrogelators based on aromatic-aromatic interactions. Shi J; Gao Y; Yang Z; Xu B Beilstein J Org Chem; 2011 Feb; 7():167-72. PubMed ID: 21448260 [TBL] [Abstract][Full Text] [Related]
7. Insights into the coassembly of hydrogelators and surfactants based on aromatic peptide amphiphiles. Fleming S; Debnath S; Frederix PW; Hunt NT; Ulijn RV Biomacromolecules; 2014 Apr; 15(4):1171-84. PubMed ID: 24568678 [TBL] [Abstract][Full Text] [Related]
8. Hydrogelation through self-assembly of fmoc-peptide functionalized cationic amphiphiles: potent antibacterial agent. Debnath S; Shome A; Das D; Das PK J Phys Chem B; 2010 Apr; 114(13):4407-15. PubMed ID: 20297770 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and characterization of maltose-based amphiphiles as supramolecular hydrogelators. Clemente MJ; Fitremann J; Mauzac M; Serrano JL; Oriol L Langmuir; 2011 Dec; 27(24):15236-47. PubMed ID: 22124333 [TBL] [Abstract][Full Text] [Related]
14. Supramolecular ultra-short carboxybenzyl-protected dehydropeptide-based hydrogels for drug delivery. Veloso SRS; Jervis PJ; Silva JFG; Hilliou L; Moura C; Pereira DM; Coutinho PJG; Martins JA; Castanheira EMS; Ferreira PMT Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111869. PubMed ID: 33641890 [TBL] [Abstract][Full Text] [Related]
15. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives. Ryan DM; Doran TM; Anderson SB; Nilsson BL Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045 [TBL] [Abstract][Full Text] [Related]
16. Introducing D-amino acid or simple glycoside into small peptides to enable supramolecular hydrogelators to resist proteolysis. Li X; Du X; Li J; Gao Y; Pan Y; Shi J; Zhou N; Xu B Langmuir; 2012 Sep; 28(37):13512-7. PubMed ID: 22906360 [TBL] [Abstract][Full Text] [Related]
17. Magnetic Dehydrodipeptide-Based Self-Assembled Hydrogels for Theragnostic Applications. Carvalho A; Gallo J; Pereira DM; Valentão P; Andrade PB; Hilliou L; Ferreira PMT; Bañobre-López M; Martins JA Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30987203 [TBL] [Abstract][Full Text] [Related]
18. Imaging-Based Study on Control Factors over Self-Sorting of Supramolecular Nanofibers Formed from Peptide- and Lipid-type Hydrogelators. Kubota R; Liu S; Shigemitsu H; Nakamura K; Tanaka W; Ikeda M; Hamachi I Bioconjug Chem; 2018 Jun; 29(6):2058-2067. PubMed ID: 29742348 [TBL] [Abstract][Full Text] [Related]
19. Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators. Rajagopal K; Ozbas B; Pochan DJ; Schneider JP Eur Biophys J; 2006 Jan; 35(2):162-9. PubMed ID: 16283291 [TBL] [Abstract][Full Text] [Related]
20. Design and Characterization of Nucleopeptides for Hydrogel Self-Assembly. Baek K; Noblett AD; Ren P; Suggs LJ ACS Appl Bio Mater; 2019 Jul; 2(7):2812-2821. PubMed ID: 35030815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]