These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 32262773)

  • 21. Carbon Nanomaterials for Biomedical Application.
    Lee SH; Rho WY; Chang H; Lee JH; Kim J; Lee SH; Jun BH
    Adv Exp Med Biol; 2021; 1309():257-276. PubMed ID: 33782876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy.
    Peng F; Su Y; Zhong Y; Fan C; Lee ST; He Y
    Acc Chem Res; 2014 Feb; 47(2):612-23. PubMed ID: 24397270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bimetallic Au-Pd nanoparticles on 2D supported graphitic carbon nitride and reduced graphene oxide sheets: A comparative photocatalytic degradation study of organic pollutants in water.
    Darabdhara G; Das MR
    Chemosphere; 2018 Apr; 197():817-829. PubMed ID: 29407845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. One-step synthesis of soy protein/graphene nanocomposites and their application in photothermal therapy.
    Jiang X; Li Z; Yao J; Shao Z; Chen X
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():798-804. PubMed ID: 27524082
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Noble Metals Functionalized on Graphene Oxide Obtained by Different Methods-New Catalytic Materials.
    Iordache M; Oubraham A; Sorlei IS; Lungu FA; Capris C; Popescu T; Marinoiu A
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839151
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphene and its derivatives as biomedical materials: future prospects and challenges.
    Banerjee AN
    Interface Focus; 2018 Jun; 8(3):20170056. PubMed ID: 29696088
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical sensor for Isoniazid based on the glassy carbon electrode modified with reduced graphene oxide-Au nanomaterials.
    Guo Z; Wang ZY; Wang HH; Huang GQ; Li MM
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():197-204. PubMed ID: 26354255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of reduced graphene oxide/CeO2 nanocomposites and their photocatalytic properties.
    Ji Z; Shen X; Li M; Zhou H; Zhu G; Chen K
    Nanotechnology; 2013 Mar; 24(11):115603. PubMed ID: 23448977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intracellular localization and toxicity of graphene oxide and reduced graphene oxide nanoplatelets to mussel hemocytes in vitro.
    Katsumiti A; Tomovska R; Cajaraville MP
    Aquat Toxicol; 2017 Jul; 188():138-147. PubMed ID: 28521151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The interplay between carbon nanomaterials and amyloid fibrils in bio-nanotechnology.
    Li C; Mezzenga R
    Nanoscale; 2013 Jul; 5(14):6207-18. PubMed ID: 23744243
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphene oxide and hydroxyapatite as fillers of polylactic acid nanocomposites: preparation and characterization.
    Marques PA; Gonçalves G; Singh MK; Grácio J
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6686-92. PubMed ID: 22962807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery.
    Wang H; Chen Q; Zhou S
    Chem Soc Rev; 2018 Jun; 47(11):4198-4232. PubMed ID: 29667656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graphene-based nanocomposites: synthesis and their theranostic applications.
    Madni A; Noreen S; Maqbool I; Rehman F; Batool A; Kashif PM; Rehman M; Tahir N; Khan MI
    J Drug Target; 2018 Dec; 26(10):858-883. PubMed ID: 29424250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Material chemistry of graphene oxide-based nanocomposites for theranostic nanomedicine.
    Zhou Y; Jing X; Chen Y
    J Mater Chem B; 2017 Aug; 5(32):6451-6470. PubMed ID: 32264411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In Situ Grown TiO2 Nanospindles Facilitate the Formation of Holey Reduced Graphene Oxide by Photodegradation.
    Peng G; Ellis JE; Xu G; Xu X; Star A
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7403-10. PubMed ID: 26929979
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene.
    Gaur M; Misra C; Yadav AB; Swaroop S; Maolmhuaidh FÓ; Bechelany M; Barhoum A
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anchoring noble metal nanoparticles on CeO2 modified reduced graphene oxide nanosheets and their enhanced catalytic properties.
    Ji Z; Shen X; Xu Y; Zhu G; Chen K
    J Colloid Interface Sci; 2014 Oct; 432():57-64. PubMed ID: 25080384
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using reduced graphene oxide-Ca:CdSe nanocomposite to enhance photoelectrochemical activity of gold nanoparticles functionalized tungsten oxide for highly sensitive prostate specific antigen detection.
    Wang X; Xu R; Sun X; Wang Y; Ren X; Du B; Wu D; Wei Q
    Biosens Bioelectron; 2017 Oct; 96():239-245. PubMed ID: 28500948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of graphene-gold nanocomposites via sonochemical reduction.
    Park G; Lee KG; Lee SJ; Park TJ; Wi R; Kim DH
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6095-101. PubMed ID: 22121665
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications.
    Erol O; Uyan I; Hatip M; Yilmaz C; Tekinay AB; Guler MO
    Nanomedicine; 2018 Oct; 14(7):2433-2454. PubMed ID: 28552644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.