BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 32262854)

  • 21. Appreciable biosafety, biocompatibility and osteogenic capability of 3D printed nonstoichiometric wollastonite scaffolds favorable for clinical translation.
    Wei Y; Wang Z; Lei L; Han J; Zhong S; Yang X; Gou Z; Chen L
    J Orthop Translat; 2024 Mar; 45():88-99. PubMed ID: 38516038
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration.
    Maleki H; Shahbazi MA; Montes S; Hosseini SH; Eskandari MR; Zaunschirm S; Verwanger T; Mathur S; Milow B; Krammer B; Hüsing N
    ACS Appl Mater Interfaces; 2019 May; 11(19):17256-17269. PubMed ID: 31013056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biofunctional Ionic-Doped Calcium Phosphates: Silk Fibroin Composites for Bone Tissue Engineering Scaffolding.
    Pina S; Canadas RF; Jiménez G; Perán M; Marchal JA; Reis RL; Oliveira JM
    Cells Tissues Organs; 2017; 204(3-4):150-163. PubMed ID: 28803246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein-inorganic hybrid porous scaffolds for bone tissue engineering.
    Lu M; Sun L; Yao J; Zhao B; Liu Y; Shao Z; Chen X
    J Mater Chem B; 2022 Aug; 10(34):6546-6556. PubMed ID: 36000545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo.
    Dasgupta S; Maji K; Nandi SK
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI; Cahill PA; Stokes J; McGuinness GB
    J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.
    Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y
    Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silk-based anisotropical 3D biotextiles for bone regeneration.
    Ribeiro VP; Silva-Correia J; Nascimento AI; da Silva Morais A; Marques AP; Ribeiro AS; Silva CJ; Bonifácio G; Sousa RA; Oliveira JM; Oliveira AL; Reis RL
    Biomaterials; 2017 Apr; 123():92-106. PubMed ID: 28161684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cobalt-doped bioceramic scaffolds fabricated by 3D printing show enhanced osteogenic and angiogenic properties for bone repair.
    Li J; Zhao C; Liu C; Wang Z; Ling Z; Lin B; Tan B; Zhou L; Chen Y; Liu D; Zou X; Liu W
    Biomed Eng Online; 2021 Jul; 20(1):70. PubMed ID: 34303371
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying.
    Hejazi F; Mirzadeh H
    J Mater Sci Mater Med; 2016 Sep; 27(9):143. PubMed ID: 27550014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The design of strut/TPMS-based pore geometries in bioceramic scaffolds guiding osteogenesis and angiogenesis in bone regeneration.
    Li Y; Li J; Jiang S; Zhong C; Zhao C; Jiao Y; Shen J; Chen H; Ye M; Zhou J; Yang X; Gou Z; Xu S; Shen M
    Mater Today Bio; 2023 Jun; 20():100667. PubMed ID: 37273795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure-property relationships of silk-modified mesoporous bioglass scaffolds.
    Wu C; Zhang Y; Zhu Y; Friis T; Xiao Y
    Biomaterials; 2010 May; 31(13):3429-38. PubMed ID: 20122721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell proliferation and migration in silk fibroin 3D scaffolds.
    Mandal BB; Kundu SC
    Biomaterials; 2009 May; 30(15):2956-65. PubMed ID: 19249094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mesoporous bioactive glass-coated 3D printed borosilicate bioactive glass scaffolds for improving repair of bone defects.
    Qi X; Wang H; Zhang Y; Pang L; Xiao W; Jia W; Zhao S; Wang D; Huang W; Wang Q
    Int J Biol Sci; 2018; 14(4):471-484. PubMed ID: 29725268
    [No Abstract]   [Full Text] [Related]  

  • 38. The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7.
    Zhang Y; Fan W; Ma Z; Wu C; Fang W; Liu G; Xiao Y
    Acta Biomater; 2010 Aug; 6(8):3021-8. PubMed ID: 20188872
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone regeneration on macroporous aqueous-derived silk 3-D scaffolds.
    Kim HJ; Kim UJ; Leisk GG; Bayan C; Georgakoudi I; Kaplan DL
    Macromol Biosci; 2007 May; 7(5):643-55. PubMed ID: 17477447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.