BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 32262854)

  • 41. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.
    Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative evaluation of in vivo biocompatibility and biodegradability of regenerated silk scaffolds reinforced with/without natural silk fibers.
    Mobini S; Taghizadeh-Jahed M; Khanmohammadi M; Moshiri A; Naderi MM; Heidari-Vala H; Ashrafi Helan J; Khanjani S; Springer A; Akhondi MM; Kazemnejad S
    J Biomater Appl; 2016 Jan; 30(6):793-809. PubMed ID: 26475850
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation and in vitro characterization of biomorphic silk fibroin scaffolds for bone tissue engineering.
    Qian J; Suo A; Jin X; Xu W; Xu M
    J Biomed Mater Res A; 2014 Sep; 102(9):2961-71. PubMed ID: 24123779
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration.
    Ribeiro VP; da Silva Morais A; Maia FR; Canadas RF; Costa JB; Oliveira AL; Oliveira JM; Reis RL
    Acta Biomater; 2018 May; 72():167-181. PubMed ID: 29626700
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration.
    Wang C; Xu D; Lin L; Li S; Hou W; He Y; Sheng L; Yi C; Zhang X; Li H; Li Y; Zhao W; Yu D
    Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112499. PubMed ID: 34857285
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surface modification of strontium-doped porous bioactive ceramic scaffolds via poly(DOPA) coating and immobilizing silk fibroin for excellent angiogenic and osteogenic properties.
    Wang X; Gu Z; Jiang B; Li L; Yu X
    Biomater Sci; 2016 Apr; 4(4):678-88. PubMed ID: 26870855
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioceramic hydroxyapatite-based scaffold with a porous structure using honeycomb as a natural polymeric Porogen for bone tissue engineering.
    Sari M; Hening P; Chotimah ; Ana ID; Yusuf Y
    Biomater Res; 2021 Jan; 25(1):2. PubMed ID: 33468254
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New insight into biodegradable macropore filler on tuning mechanical properties and bone tissue ingrowth in sparingly dissolvable bioceramic scaffolds.
    Jiao X; Wu F; Yue X; Yang J; Zhang Y; Qiu J; Ke X; Sun X; Zhao L; Xu C; Li Y; Yang X; Yang G; Gou Z; Zhang L
    Mater Today Bio; 2024 Feb; 24():100936. PubMed ID: 38234459
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel Hierarchical Nitrogen-Doped Multiwalled Carbon Nanotubes/Cellulose/Nanohydroxyapatite Nanocomposite As an Osteoinductive Scaffold for Enhancing Bone Regeneration.
    Zhang X; Yin X; Luo J; Zheng X; Wang H; Wang J; Xi Z; Liao X; Machuki JO; Guo K; Gao F
    ACS Biomater Sci Eng; 2019 Jan; 5(1):294-307. PubMed ID: 33405875
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 3D Printing of Hierarchical Silk Fibroin Structures.
    Sommer MR; Schaffner M; Carnelli D; Studart AR
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34677-34685. PubMed ID: 27933765
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preparation and Evaluation of Gelatin-Chitosan-Nanobioglass 3D Porous Scaffold for Bone Tissue Engineering.
    Maji K; Dasgupta S; Pramanik K; Bissoyi A
    Int J Biomater; 2016; 2016():9825659. PubMed ID: 26884764
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering.
    Tong S; Xu DP; Liu ZM; Du Y; Wang XK
    Int J Mol Med; 2016 Aug; 38(2):367-80. PubMed ID: 27352815
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution.
    Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z
    J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assembling of electrospun meshes into three-dimensional porous scaffolds for bone repair.
    Song J; Zhu G; Wang L; An G; Shi X; Wang Y
    Biofabrication; 2017 Feb; 9(1):015018. PubMed ID: 28140360
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bone tissue engineering using 3D silk scaffolds and human dental pulp stromal cells epigenetic reprogrammed with the selective histone deacetylase inhibitor MI192.
    Man K; Joukhdar H; Manz XD; Brunet MY; Jiang LH; Rnjak-Kovacina J; Yang XB
    Cell Tissue Res; 2022 Jun; 388(3):565-581. PubMed ID: 35362831
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation.
    Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H
    Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hybrid porous zirconia scaffolds fabricated using additive manufacturing for bone tissue engineering applications.
    Sakthiabirami K; Kang JH; Jang JG; Soundharrajan V; Lim HP; Yun KD; Park C; Lee BN; Yang YP; Park SW
    Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111950. PubMed ID: 33812579
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hierarchically porous structure, mechanical strength and cell biological behaviors of calcium phosphate composite scaffolds prepared by combination of extrusion and porogen burnout technique and enhanced by gelatin.
    Feng S; He F; Ye J
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():217-224. PubMed ID: 29025651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.