These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32262962)

  • 1. Osteoinduction and long-term osseointegration promoted by combined effects of nitrogen and manganese elements in high nitrogen nickel-free stainless steel.
    Yu Y; Ding T; Xue Y; Sun J
    J Mater Chem B; 2016 Jan; 4(4):801-812. PubMed ID: 32262962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants.
    Yu Y; Jin G; Xue Y; Wang D; Liu X; Sun J
    Acta Biomater; 2017 Feb; 49():590-603. PubMed ID: 27915020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytocompatibility and Bone-Formation Potential of Se-Coated 316L Stainless Steel with Nano-Pit Arrays.
    Hu H; Cui R; Mei L; Ni S; Sun H; Zhang C; Ni S
    J Biomed Nanotechnol; 2018 Apr; 14(4):716-724. PubMed ID: 31352945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-manganese and nitrogen stabilized austenitic stainless steel (Fe-18Cr-22Mn-0.65N): a material with a bright future for orthopedic implant devices.
    Kumar CS; Singh G; Poddar S; Varshney N; Mahto SK; Podder AS; Chattopadhyay K; Rastogi A; Singh V; Mahobia GS
    Biomed Mater; 2021 Sep; 16(6):. PubMed ID: 34517359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promotion of initial cell adhesion on trisuccinimidyl citrate-modified nickel-free high-nitrogen stainless steel.
    Sasaki M; Inoue M; Katada Y; Taguchi T
    J Mater Sci Mater Med; 2013 Apr; 24(4):951-8. PubMed ID: 23334307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P2000 - A high-nitrogen austenitic steel for application in bone surgery.
    Becerikli M; Jaurich H; Wallner C; Wagner JM; Dadras M; Jettkant B; Pöhl F; Seifert M; Jung O; Mitevski B; Karkar A; Lehnhardt M; Fischer A; Kauther MD; Behr B
    PLoS One; 2019; 14(3):e0214384. PubMed ID: 30913254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased consumption of Ca and P during in vitro biomineralization and biologically induced deposition of Ni and Cr in presence of stainless steel corrosion products.
    Morais S; Sousa JP; Fernandes MH; Carvalho GS; de Bruijn JD; van Blitterswijk CA
    J Biomed Mater Res; 1998 Nov; 42(2):199-212. PubMed ID: 9773816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical compatibility of high strength nickel free stainless steel bone plate under lightweight design.
    Ren Y; Zhao H; Yang K; Zhang Y
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():415-422. PubMed ID: 31029335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and biological evaluation of hydroxyapatite-coated nickel-free high-nitrogen stainless steel.
    Sasaki M; Inoue M; Katada Y; Nishida Y; Taniguchi A; Hiromoto S; Taguchi T
    Sci Technol Adv Mater; 2012 Dec; 13(6):064213. PubMed ID: 27877540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative biocompatibility evaluation of nickel-free high-nitrogen stainless steel in vitro/in vivo.
    Inoue M; Sasaki M; Katada Y; Taguchi T
    J Biomed Mater Res B Appl Biomater; 2014 Jan; 102(1):68-72. PubMed ID: 23852917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways.
    Wang C; Lin K; Chang J; Sun J
    Biomaterials; 2013 Jan; 34(1):64-77. PubMed ID: 23069715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.
    Talha M; Behera CK; Sinha OP
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3563-75. PubMed ID: 23910251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of VEGF-immobilized nickel-free high-nitrogen stainless steel on viability and proliferation of vascular endothelial cells.
    Sasaki M; Inoue M; Katada Y; Taguchi T
    Colloids Surf B Biointerfaces; 2012 Apr; 92():1-8. PubMed ID: 22154009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the effect of three surface treatments on the biocompatibility of 316L stainless steel using human differentiated cells.
    Bordji K; Jouzeau JY; Mainard D; Payan E; Delagoutte JP; Netter P
    Biomaterials; 1996 Mar; 17(5):491-500. PubMed ID: 8991480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoblast and monocyte responses to 444 ferritic stainless steel intended for a magneto-mechanically actuated fibrous scaffold.
    Malheiro VN; Spear RL; Brooks RA; Markaki AE
    Biomaterials; 2011 Oct; 32(29):6883-92. PubMed ID: 21703680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro biomineralization by osteoblast-like cells. I. Retardation of tissue mineralization by metal salts.
    Morais S; Sousa JP; Fernandes MH; Carvalho GS
    Biomaterials; 1998; 19(1-3):13-21. PubMed ID: 9678845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simvastatin induces osteogenic differentiation of MSCs via Wnt/β-catenin pathway to promote fracture healing.
    Zhang M; Bian YQ; Tao HM; Yang XF; Mu WD
    Eur Rev Med Pharmacol Sci; 2018 May; 22(9):2896-2905. PubMed ID: 29771446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic Surface Effects of Tantalum and Titanium on Integrin α5β1/ ERK1/2 Pathway-Mediated Osteogenic Differentiation in Rat Bone Mesenchymal Stromal Cells.
    Lu M; Zhuang X; Tang K; Wu P; Guo X; Yin L; Cao H; Zou D
    Cell Physiol Biochem; 2018; 51(2):589-609. PubMed ID: 30458456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Osseointegration of Hierarchical Micro/Nanotopographic Titanium Fabricated by Microarc Oxidation and Electrochemical Treatment.
    Li G; Cao H; Zhang W; Ding X; Yang G; Qiao Y; Liu X; Jiang X
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3840-52. PubMed ID: 26789077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo and in vitro analyses of the effects of a novel high-nitrogen low-nickel coronary stent on reducing in-stent restenosis.
    Wang J; Song C; Xiao Y; Liu B
    J Biomater Appl; 2018 Jul; 33(1):64-71. PubMed ID: 29720017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.