These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 32262999)

  • 21. Human Salivary Histatin-1-Functionalized Gelatin Methacrylate Hydrogels Promote the Regeneration of Cartilage and Subchondral Bone in Temporomandibular Joints.
    Shi C; Yao Y; Wang L; Sun P; Feng J; Wu G
    Pharmaceuticals (Basel); 2021 May; 14(5):. PubMed ID: 34069458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photobiomodulation combined with adipose-derived stem cells encapsulated in methacrylated gelatin hydrogels enhances in vivo bone regeneration.
    Calis M; Irmak G; Demirtaş TT; Kara M; Üstün GG; Gümüşderelioğlu M; Türkkanı A; Çakar AN; Özgür F
    Lasers Med Sci; 2022 Feb; 37(1):595-606. PubMed ID: 33839962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomimetic Ti-6Al-4V alloy/gelatin methacrylate hybrid scaffold with enhanced osteogenic and angiogenic capabilities for large bone defect restoration.
    Ma L; Wang X; Zhou Y; Ji X; Cheng S; Bian D; Fan L; Zhou L; Ning C; Zhang Y
    Bioact Mater; 2021 Oct; 6(10):3437-3448. PubMed ID: 33817419
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication and Characterization of Biodegradable Gelatin Methacrylate/Biphasic Calcium Phosphate Composite Hydrogel for Bone Tissue Engineering.
    Choi JB; Kim YK; Byeon SM; Park JE; Bae TS; Jang YS; Lee MH
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33801249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rational design of hydrogels to enhance osteogenic potential.
    Kim S; Lee M
    Chem Mater; 2020 Nov; 32(22):9508-9530. PubMed ID: 33551566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Swelling Behaviors of 3D Printed Hydrogel and Hydrogel-Microcarrier Composite Scaffolds.
    Bittner SM; Pearce HA; Hogan KJ; Smoak MM; Guo JL; Melchiorri AJ; Scott DW; Mikos AG
    Tissue Eng Part A; 2021 Jun; 27(11-12):665-678. PubMed ID: 33470161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gelatin Methacryloyl (GelMA) Nanocomposite Hydrogels Embedding Bioactive Naringin Liposomes.
    Elkhoury K; Sanchez-Gonzalez L; Lavrador P; Almeida R; Gaspar V; Kahn C; Cleymand F; Arab-Tehrany E; Mano JF
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33317207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integration of Epigallocatechin Gallate in Gelatin Sponges Attenuates Matrix Metalloproteinase-Dependent Degradation and Increases Bone Formation.
    Huang A; Honda Y; Li P; Tanaka T; Baba S
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31801223
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlled Release of Naringin in GelMA-Incorporated Rutile Nanorod Films to Regulate Osteogenic Differentiation of Mesenchymal Stem Cells.
    Shao Y; You D; Lou Y; Li J; Ying B; Cheng K; Weng W; Wang H; Yu M; Dong L
    ACS Omega; 2019 Nov; 4(21):19350-19357. PubMed ID: 31763559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and Properties of Gelatin Methacryloyl (GelMA) Hydrogels and Their Recent Applications in Load-Bearing Tissue.
    Sun M; Sun X; Wang Z; Guo S; Yu G; Yang H
    Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Micro-CT - a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results.
    Cengiz IF; Oliveira JM; Reis RL
    Biomater Res; 2018; 22():26. PubMed ID: 30275969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Cocktail Effect of BMP-2 and TGF-β1 Loaded in Visible Light-Cured Glycol Chitosan Hydrogels for the Enhancement of Bone Formation in a Rat Tibial Defect Model.
    Yoon SJ; Yoo Y; Nam SE; Hyun H; Lee DW; Um S; Kim SY; Hong SO; Yang DH; Chun HJ
    Mar Drugs; 2018 Sep; 16(10):. PubMed ID: 30257482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration.
    Celikkin N; Mastrogiacomo S; Jaroszewicz J; Walboomers XF; Swieszkowski W
    J Biomed Mater Res A; 2018 Jan; 106(1):201-209. PubMed ID: 28884519
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells.
    Xia L; Lin K; Jiang X; Fang B; Xu Y; Liu J; Zeng D; Zhang M; Zhang X; Chang J; Zhang Z
    Biomaterials; 2014 Oct; 35(30):8514-27. PubMed ID: 25002263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone Matrix Non-Collagenous Proteins in Tissue Engineering: Creating New Bone by Mimicking the Extracellular Matrix.
    Carvalho MS; Cabral JMS; da Silva CL; Vashishth D
    Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33808184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomimetic polymer scaffolds to promote stem cell-mediated osteogenesis.
    Ko E; Cho SW
    Int J Stem Cells; 2013 Nov; 6(2):87-91. PubMed ID: 24386552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomimetic gelatin methacrylamide hydrogel scaffolds for bone tissue engineering.
    Fang X; Xie J; Zhong L; Li J; Rong D; Li X; Ouyang J
    J Mater Chem B; 2016 Feb; 4(6):1070-1080. PubMed ID: 32262999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomimetic Methacrylated Gelatin Hydrogel Loaded With Bone Marrow Mesenchymal Stem Cells for Bone Tissue Regeneration.
    Li J; Wang W; Li M; Song P; Lei H; Gui X; Zhou C; Liu L
    Front Bioeng Biotechnol; 2021; 9():770049. PubMed ID: 34926420
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.