BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 32263060)

  • 1. Investigation of synergistic effects of inductive and conductive factors in gelatin-based cryogels for bone tissue engineering.
    Liao HT; Shalumon KT; Chang KH; Sheu C; Chen JP
    J Mater Chem B; 2016 Mar; 4(10):1827-1841. PubMed ID: 32263060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells.
    Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: in vitro and in vivo studies.
    Chang KH; Liao HT; Chen JP
    Acta Biomater; 2013 Nov; 9(11):9012-26. PubMed ID: 23851171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gelatin/Nanohyroxyapatite Cryogel Embedded Poly(lactic-
    Shalumon KT; Kuo CY; Wong CB; Chien YM; Chen HA; Chen JP
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically.
    Jeon O; Rhie JW; Kwon IK; Kim JH; Kim BS; Lee SH
    Tissue Eng Part A; 2008 Aug; 14(8):1285-94. PubMed ID: 18593269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Gelatin and Gelatin/Hyaluronic Acid Cryogel Scaffolds for the 3D Culture of Mesothelial Cells and Mesothelium Tissue Regeneration.
    Kao HH; Kuo CY; Chen KS; Chen JP
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31547444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmental bone regeneration using an rhBMP-2-loaded gelatin/nanohydroxyapatite/fibrin scaffold in a rabbit model.
    Liu Y; Lu Y; Tian X; Cui G; Zhao Y; Yang Q; Yu S; Xing G; Zhang B
    Biomaterials; 2009 Oct; 30(31):6276-85. PubMed ID: 19683811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential growth factor releasing double cryogel system for enhanced bone regeneration.
    Lee SS; Kim JH; Jeong J; Kim SHL; Koh RH; Kim I; Bae S; Lee H; Hwang NS
    Biomaterials; 2020 Oct; 257():120223. PubMed ID: 32736254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of vascular endothelial growth factor 165-loaded porous poly (ε-caprolactone) scaffolds on the osteogenic differentiation of adipose-derived stem cells].
    Xu W; Lu H; Ye J; Yang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Mar; 32(3):270-275. PubMed ID: 29806274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of gelatin/ascorbic acid cryogels for potential use in corneal stromal tissue engineering.
    Luo LJ; Lai JY; Chou SF; Hsueh YJ; Ma DH
    Acta Biomater; 2018 Jan; 65():123-136. PubMed ID: 29128534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteogenic Effects of VEGF-Overexpressed Human Adipose-Derived Stem Cells with Whitlockite Reinforced Cryogel for Bone Regeneration.
    Kim I; Lee SS; Kim SHL; Bae S; Lee H; Hwang NS
    Macromol Biosci; 2019 May; 19(5):e1800460. PubMed ID: 30821921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Biomimicking Polymeric Cryogel Scaffold for Repair of Critical-Sized Cranial Defect in a Rat Model.
    Liu C; Lin C; Feng X; Wu Z; Lin G; Quan C; Chen B; Zhang C
    Tissue Eng Part A; 2019 Dec; 25(23-24):1591-1604. PubMed ID: 30950322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core-Shell Nanofibrous Membranes.
    Shalumon KT; Lai GJ; Chen CH; Chen JP
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21170-81. PubMed ID: 26355766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient regeneration of rat calvarial defect with gelatin-hydroxyapatite composite cryogel.
    Zhang Y; Leng H; Du Z; Huang Y; Liu X; Zhao Z; Zhang X; Cai Q; Yang X
    Biomed Mater; 2020 Sep; 15(6):065005. PubMed ID: 32422614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PCL/Col I-based magnetic nanocomposite scaffold provides an osteoinductive environment for ADSCs in osteogenic cues-free media conditions.
    Sadeghzadeh H; Mehdipour A; Dianat-Moghadam H; Salehi R; Khoshfetrat AB; Hassani A; Mohammadnejad D
    Stem Cell Res Ther; 2022 Apr; 13(1):143. PubMed ID: 35379318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bioinspired, ice-templated multifunctional 3D cryogel composite crosslinked through in situ reduction of GO displayed improved mechanical, osteogenic and antimicrobial properties.
    Chopra V; Thomas J; Sharma A; Panwar V; Kaushik S; Ghosh D
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111584. PubMed ID: 33321630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocomposite macroporous cryogels as potential carrier scaffolds for bone active agents augmenting bone regeneration.
    Raina DB; Isaksson H; Teotia AK; Lidgren L; Tägil M; Kumar A
    J Control Release; 2016 Aug; 235():365-378. PubMed ID: 27252151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled Release of BMP-2 from a Heparin-Conjugated Strontium-Substituted Nanohydroxyapatite/Silk Fibroin Scaffold for Bone Regeneration.
    Yan S; Feng L; Zhu Q; Yang W; Lan Y; Li D; Liu Y; Xue W; Guo R; Wu G
    ACS Biomater Sci Eng; 2018 Sep; 4(9):3291-3303. PubMed ID: 33435067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of scaffold microarchitecture on osteogenic differentiation of human mesenchymal stem cells.
    Phadke A; Hwang Y; Kim SH; Kim SH; Yamaguchi T; Masuda K; Varghese S
    Eur Cell Mater; 2013 Jan; 25():114-129. PubMed ID: 23329467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Biomimetic Macroporous Hybrid Scaffold with Sustained Drug Delivery for Enhanced Bone Regeneration.
    Lee SS; Santschi M; Ferguson SJ
    Biomacromolecules; 2021 Jun; 22(6):2460-2471. PubMed ID: 33971092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.