These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32263076)

  • 1. Nitric oxide release from a biodegradable cysteine-based polyphosphazene.
    Lutzke A; Neufeld BH; Neufeld MJ; Reynolds MM
    J Mater Chem B; 2016 Mar; 4(11):1987-1998. PubMed ID: 32263076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustained Nitric Oxide Release from a Tertiary S-Nitrosothiol-based Polyphosphazene Coating.
    Lutzke A; Tapia JB; Neufeld MJ; Reynolds MM
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2104-2113. PubMed ID: 28068065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable citrate-based polyesters with S-nitrosothiol functional groups for nitric oxide release.
    Yapor JP; Lutzke A; Pegalajar-Jurado A; Neufeld BH; Damodaran VB; Reynolds MM
    J Mater Chem B; 2015 Dec; 3(48):9233-9241. PubMed ID: 32262922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable crosslinked polyesters derived from thiomalic acid and
    Yapor JP; Neufeld BH; Tapia JB; Reynolds MM
    J Mater Chem B; 2018 Jun; 6(24):4071-4081. PubMed ID: 31372219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generational Biodegradable and Regenerative Polyphosphazene Polymers and their Blends with Poly (lactic-co-glycolic acid).
    Ogueri KS; Allcock HR; Laurencin CT
    Prog Polym Sci; 2019 Nov; 98():. PubMed ID: 31551636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide-releasing S-nitrosated derivatives of chitin and chitosan for biomedical applications.
    Lutzke A; Pegalajar-Jurado A; Neufeld BH; Reynolds MM
    J Mater Chem B; 2014 Nov; 2(42):7449-7458. PubMed ID: 32261970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradable polymers. II. Degradation characteristics of hydrolysis-sensitive poly[(organo)phosphazenes].
    Crommen JH; Schacht EH; Mense EH
    Biomaterials; 1992; 13(9):601-11. PubMed ID: 1391407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable polymers. I. Synthesis of hydrolysis-sensitive poly[(organo)phosphazenes].
    Crommen JH; Schacht EH; Mense EH
    Biomaterials; 1992; 13(8):511-20. PubMed ID: 1633224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel micro-crosslinked poly(organophosphazenes) with improved mechanical properties and controllable degradation rate as potential biodegradable matrix.
    Cui Y; Zhao X; Tang X; Luo Y
    Biomaterials; 2004 Feb; 25(3):451-7. PubMed ID: 14585693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradable polyphosphazene/poly(alpha-hydroxyester) blends: degradation studies.
    Ambrosio AM; Allcock HR; Katti DS; Laurencin CT
    Biomaterials; 2002 Apr; 23(7):1667-72. PubMed ID: 11924588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of biodegradable polymeric nanofibers with covalently attached NO donors.
    Wold KA; Damodaran VB; Suazo LA; Bowen RA; Reynolds MM
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3022-30. PubMed ID: 22663769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes.
    Singh A; Krogman NR; Sethuraman S; Nair LS; Sturgeon JL; Brown PW; Laurencin CT; Allcock HR
    Biomacromolecules; 2006 Mar; 7(3):914-8. PubMed ID: 16529431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new textured polyphosphazene biomaterial with improved blood coagulation and microbial infection responses.
    Xu LC; Li Z; Tian Z; Chen C; Allcock HR; Siedlecki CA
    Acta Biomater; 2018 Feb; 67():87-98. PubMed ID: 29229544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering.
    Ogueri KS; Escobar Ivirico JL; Nair LS; Allcock HR; Laurencin CT
    Regen Eng Transl Med; 2017 Mar; 3(1):15-31. PubMed ID: 28596987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled release using a new bioerodible polyphosphazene matrix system.
    Laurencin CT; Koh HJ; Neenan TX; Allcock HR; Langer R
    J Biomed Mater Res; 1987 Oct; 21(10):1231-46. PubMed ID: 3693386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creation of hydrophilic nitric oxide releasing polymers via plasma surface modification.
    Pegalajar-Jurado A; Joslin JM; Hawker MJ; Reynolds MM; Fisher ER
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12307-20. PubMed ID: 25026120
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Yang L; Lu Y; Soto RJ; Shah A; Ahonen MJR; Schoenfisch MH
    Polym Chem; 2016 Dec; 7(46):7161-7169. PubMed ID: 34276815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization, and controlled nitric oxide release from S-nitrosothiol-derivatized fumed silica polymer filler particles.
    Frost MC; Meyerhoff ME
    J Biomed Mater Res A; 2005 Mar; 72(4):409-19. PubMed ID: 15682428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide-releasing hydrophobic polymers: preparation, characterization, and potential biomedical applications.
    Reynolds MM; Frost MC; Meyerhoff ME
    Free Radic Biol Med; 2004 Oct; 37(7):926-36. PubMed ID: 15336308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S-Transnitrosation reactions of hydrogen sulfide (H
    Tsikas D; Böhmer A
    Nitric Oxide; 2017 May; 65():22-36. PubMed ID: 28185882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.