These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32263077)

  • 1. Protein release from highly charged peptide hydrogel networks.
    Nagy-Smith K; Yamada Y; Schneider JP
    J Mater Chem B; 2016 Mar; 4(11):1999-2007. PubMed ID: 32263077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of protein structure on their controlled release from an injectable peptide hydrogel.
    Branco MC; Pochan DJ; Wagner NJ; Schneider JP
    Biomaterials; 2010 Dec; 31(36):9527-34. PubMed ID: 20952055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serum Protein Adsorption Modulates the Toxicity of Highly Positively Charged Hydrogel Surfaces.
    Yamada Y; Fichman G; Schneider JP
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8006-8014. PubMed ID: 33590757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides.
    Roberts D; Rochas C; Saiani A; Miller AF
    Langmuir; 2012 Nov; 28(46):16196-206. PubMed ID: 23088490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An interplay between electrostatic and polar interactions in peptide hydrogels.
    Joyner K; Taraban MB; Feng Y; Yu YB
    Biopolymers; 2013 Apr; 100(2):174-83. PubMed ID: 23616100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular, Local, and Network-Level Basis for the Enhanced Stiffness of Hydrogel Networks Formed from Coassembled Racemic Peptides: Predictions from Pauling and Corey.
    Nagy-Smith K; Beltramo PJ; Moore E; Tycko R; Furst EM; Schneider JP
    ACS Cent Sci; 2017 Jun; 3(6):586-597. PubMed ID: 28691070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sol-gel transition of charged fibrils composed of a model amphiphilic peptide.
    Owczarz M; Bolisetty S; Mezzenga R; Arosio P
    J Colloid Interface Sci; 2015 Jan; 437():244-251. PubMed ID: 25441357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-gelling hydrogels based on oppositely charged dextran microspheres.
    Van Tomme SR; van Steenbergen MJ; De Smedt SC; van Nostrum CF; Hennink WE
    Biomaterials; 2005 May; 26(14):2129-35. PubMed ID: 15576188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymorphism in self-assembly of peptide-based β-hairpin contributes to network morphology and hydrogel mechanical rigidity.
    Miller Y; Ma B; Nussinov R
    J Phys Chem B; 2015 Jan; 119(2):482-90. PubMed ID: 25545881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anionic and cationic dextran hydrogels for post-loading and release of proteins.
    Schillemans JP; Verheyen E; Barendregt A; Hennink WE; Van Nostrum CF
    J Control Release; 2011 Mar; 150(3):266-71. PubMed ID: 21130815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular diffusion and release from self-assembled beta-hairpin peptide hydrogels.
    Branco MC; Pochan DJ; Wagner NJ; Schneider JP
    Biomaterials; 2009 Mar; 30(7):1339-47. PubMed ID: 19100615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable mechanics of peptide nanofiber gels.
    Greenfield MA; Hoffman JR; de la Cruz MO; Stupp SI
    Langmuir; 2010 Mar; 26(5):3641-7. PubMed ID: 19817454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterotypic Supramolecular Hydrogels Formed by Noncovalent Interactions in Inflammasomes.
    Shy AN; Wang H; Feng Z; Xu B
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33375296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of network charge on the immobilization and release of proteins from chemically crosslinked dextran hydrogels.
    Schillemans JP; Hennink WE; van Nostrum CF
    Eur J Pharm Biopharm; 2010 Nov; 76(3):329-35. PubMed ID: 20708077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobility of model proteins in hydrogels composed of oppositely charged dextran microspheres studied by protein release and fluorescence recovery after photobleaching.
    Van Tomme SR; De Geest BG; Braeckmans K; De Smedt SC; Siepmann F; Siepmann J; van Nostrum CF; Hennink WE
    J Control Release; 2005 Dec; 110(1):67-78. PubMed ID: 16253375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the pH responsiveness of beta-hairpin peptide folding, self-assembly, and hydrogel material formation.
    Rajagopal K; Lamm MS; Haines-Butterick LA; Pochan DJ; Schneider JP
    Biomacromolecules; 2009 Sep; 10(9):2619-25. PubMed ID: 19663418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An injectable hyaluronic acid-tyramine hydrogel system for protein delivery.
    Lee F; Chung JE; Kurisawa M
    J Control Release; 2009 Mar; 134(3):186-93. PubMed ID: 19121348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tough and responsive oppositely charged nanocomposite hydrogels for use as bilayer actuators assembled through interfacial electrostatic attraction.
    Liu S; Gao G; Xiao Y; Fu J
    J Mater Chem B; 2016 May; 4(19):3239-3246. PubMed ID: 32263259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine Self-Polymerization as a Simple and Powerful Tool to Modulate the Viscoelastic Mechanical Properties of Peptide-Based Gels.
    Fichman G; Schneider JP
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33806346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.