BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 32263101)

  • 1. Loading and release of fluorescent oligoarginine peptides into/from pH-responsive anionic supramolecular nanoparticles.
    Graña-Suárez L; Verboom W; Buckle T; Rood M; van Leeuwen FWB; Huskens J
    J Mater Chem B; 2016 Jun; 4(22):4025-4032. PubMed ID: 32263101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent supramolecular nanoparticles signal the loading of electrostatically charged cargo.
    Graña-Suárez L; Verboom W; Huskens J
    Chem Commun (Camb); 2016 Feb; 52(12):2597-600. PubMed ID: 26750921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loading and Release of Charged and Neutral Fluorescent Dyes into and from Mesoporous Materials: A Key Role for Sensing Applications.
    Climent E; Hecht M; Rurack K
    Micromachines (Basel); 2021 Feb; 12(3):. PubMed ID: 33671037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual Stimuli-Responsive Polymer Prodrugs Quantitatively Loaded by Nanoparticles for Enhanced Cellular Internalization and Triggered Drug Release.
    Huang M; Zhao K; Wang L; Lin S; Li J; Chen J; Zhao C; Ge Z
    ACS Appl Mater Interfaces; 2016 May; 8(18):11226-36. PubMed ID: 27100328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-controlled and redox-responsive supramolecular nanoparticles.
    Mejia-Ariza R; Kronig GA; Huskens J
    Beilstein J Org Chem; 2015; 11():2388-2399. PubMed ID: 26733345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-Responsive assembly of metal nanoparticles and fluorescent dyes by diblock copolymer micelles.
    Kim HW; Kim JW; Jo SH; Lee CL; Lee WK; Park SS; Chung B; Yoo SI
    Soft Matter; 2015 Jun; 11(22):4402-7. PubMed ID: 25959746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosensor of alkaline phosphatase based on non-fluorescent FRET of Eu
    Li FS; Zhang YL; Li XB; Li BL; Liu YF
    Anal Bioanal Chem; 2017 Sep; 409(23):5491-5500. PubMed ID: 28741110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-Adaptive, Antimicrobially Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency in Staphylococcal Biofilms.
    Liu Y; Busscher HJ; Zhao B; Li Y; Zhang Z; van der Mei HC; Ren Y; Shi L
    ACS Nano; 2016 Apr; 10(4):4779-89. PubMed ID: 26998731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.
    Mahajan PG; Bhopate DP; Kolekar GB; Patil SR
    J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cosynthesis of cargo-loaded hydroxyapatite/alginate core-shell nanoparticles (HAP@Alg) as pH-responsive nanovehicles by a pre-gel method.
    Liang YH; Liu CH; Liao SH; Lin YY; Tang HW; Liu SY; Lai IR; Wu KC
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6720-7. PubMed ID: 23151216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle/Polymer assembled microcapsules with pH sensing property.
    Zhang P; Song X; Tong W; Gao C
    Macromol Biosci; 2014 Oct; 14(10):1495-504. PubMed ID: 25081194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A positively charged QDs-based FRET probe for micrococcal nuclease detection.
    Qiu T; Zhao D; Zhou G; Liang Y; He Z; Liu Z; Peng X; Zhou L
    Analyst; 2010 Sep; 135(9):2394-9. PubMed ID: 20676436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA-Functionalized Dye-Loaded Polymeric Nanoparticles: Ultrabright FRET Platform for Amplified Detection of Nucleic Acids.
    Melnychuk N; Klymchenko AS
    J Am Chem Soc; 2018 Aug; 140(34):10856-10865. PubMed ID: 30067022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smart nanovehicles based on pH-triggered disassembly of supramolecular peptide-amphiphiles for efficient intracellular drug delivery.
    Xu X; Li Y; Li H; Liu R; Sheng M; He B; Gu Z
    Small; 2014 Mar; 10(6):1133-40. PubMed ID: 24155260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encapsulation-free controlled release: Electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles.
    Pakulska MM; Elliott Donaghue I; Obermeyer JM; Tuladhar A; McLaughlin CK; Shendruk TN; Shoichet MS
    Sci Adv; 2016 May; 2(5):e1600519. PubMed ID: 27386554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, characterization and energy transfer studies of fluorescent dye-labeled metal-chelating polymers anchoring pendant thiol groups for surface modification of quantum dots and investigation on their application for pH-responsive controlled release of doxorubicin.
    Nasri S; Bardajee GR; Bayat M
    Colloids Surf B Biointerfaces; 2018 Nov; 171():544-552. PubMed ID: 30096476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between cyanine dye IR-783 and polystyrene nanoparticles in solution.
    Zhang Y; Xu H; Casabianca LB
    Magn Reson Chem; 2018 Nov; 56(11):1054-1060. PubMed ID: 29771468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of particle morphology of pH-dependent poly(epsilon-caprolactone)-poly(gamma-glutamic acid) micellar nanoparticles to combat breast cancer cells.
    Chan AS; Chen CH; Huang CM; Hsieh MF
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6283-97. PubMed ID: 21137721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular glycorhodamine-polymer dot ensembles for the homogeneous, fluorogenic analysis of lectins.
    Wang CZ; He XP
    Carbohydr Res; 2018 Jan; 455():1-4. PubMed ID: 29127846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailored design of multifunctional and programmable pH-responsive self-assembling polypeptides as drug delivery nanocarrier for cancer therapy.
    Wang TW; Yeh CW; Kuan CH; Wang LW; Chen LH; Wu HC; Sun JS
    Acta Biomater; 2017 Aug; 58():54-66. PubMed ID: 28606810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.